Конкурс VK Сup. Трек ML. 4 место. Как? / Хабр
В данном конкурсе, проводимом в рамках отборочного тура VK Сup 2020, трек ML, необходимо было предсказать долю потенциальной аудитории, которая просмотрит рекламные объявления, показываемые на нескольких рекламных площадках конкретное число раз: 1,2,3 еще и в будущем.
Это было не классическое соревнование по отправке итоговых предсказаний на известные тестовые данные, а предсказание на полностью неизвестных данных, подаваемых на модель в docker, запущенном на площадке конкурса.
В целом, такое решение уравнивает шансы участников и не позволяет тем, кто любит подглядывать в тест, обогащать им тренировочный набор данных, подгонять модель под распределение тестовых данных. Здесь все были в равных условиях, так как не понятно, что может быть в данных: “мусорные” данные, спорадические выбросы, неверные разделители и прочее. Но все эти нюансы одновременно заставляют думать и об обработке исключений.
В этом конкурсе я занял непочетное 4 место и хочу рассказать, как же это удалось.
Обзор данных
Исходные данные были представлены в следующем виде:
- Файл users.tsv – содержит информацию о пользователях: пол, возраст, город проживания. Соответственно этим пользователям и показывались объявления, как в текущей истории, так и в будущем, это было гарантированно организаторами в описании задачи. Учитывая большое число пропусков в данных и неоднозначные результаты на валидации (при добавлении этих данных), я полностью отказался от их использования.
- Файл history.tsv — содержит комбинации «пользователь-площадка«, просмотр объявления за указанную цену в конкретный час (указан сквозной нумерацией) по историческим данным. То есть данный файл представлял собой статистику просмотров в прошлом, а как уже было сказано выше, оценивать новые данные мы должны на следующем интервале времени.
- Файл validate.tsv — валидационный файл для тренировки модели, в нем как раз были данные о том, в какой интервал времени и по какой цене было показано объявление для конкретной аудитории (площадка и пользователь).
- Файл validate_answers.tsv — файл ответов, состоящий из трех колонок: какая доля (значения от 0 до 1) аудитории посмотрит объявление 1, 2, 3 раза. Соответственно последовательности эти не возрастающие.
Цель конкурса: на новые данные из будущего (в формате файла validate.tsv) предсказать три набора значений — какая доля аудитории посмотрит объявление 1,2, 3 раза.
Более подробно о задаче на сайте конкурса.
Предикторы
Итоговые предикторы которые я использовал, представляют собой набор из 2 комплексов:
- предикторы на основе истории и их сопоставления с новыми данными
- предикторы только на данных из будущего
Среди первого комплекса, на основе файла истории, по сгруппированным парам «пользователь-площадка» были сгенерированы базовые статистики, и в дальнейшем их агрегация на пару «пользователь-площадка» в валидационном и тестовом файле. Далее следовал отбор предикторов разными способами — как исходя из частот использования предикторов на этапах разбиения и использования в самой модели, так и на валидациях, сверху вниз и снизу вверх. Несмотря на разные схемы отбора, в целом все сводилось примерно к одному набору предикторов и в итоге их оказалось семь.
Трактовка предикторов второго комплекса (их тоже на удивление оказалось семь) в целом гораздо проще:
1. Delta — разность времени. Логично? Логично: чем больше интервал, тем вероятно больше просмотров. Конечно, зависимости прямой нет, но физически должно быть именно так, более того это один из самых сильных предикторов, если рассматривать их по отдельности.
2. Delta2 — тоже разность времени, но переведенная в сутки (то есть целочисленное деление на 24). То есть линейную зависимость мы превращаем в кусочную. Идея здесь простая: мы не делаем различий между часами, но вот очень длительные интервалы (сутки) будут задавать свой тренд.
3. cpm — непосредственно цена, аналогично: чем дороже цена, тем более вероятен просмотр, опять же, зависимости прямой конечно нет, но в «заигрывании» с другими предикторами на основе истории, зависимость явно выслеживается.
4-7. Это sin и cos времен начала и конца показа объявлений, переведенных также в 24 часовую шкалу. Использование данных функций, в отличие от линейного времени, позволяет учесть временные интервалы, переходящие через сутки. Применение этих предикторов сразу дало улучшение на 1.5 п.п.
Метрика и отклик
Представленная организаторами метрика конкурса Smoothed Mean Log Accuracy Ratio (далее SMLAR).
Где исходный отклик представлен в доле аудитории, которая просмотрела объявление 1,2,3 раза, то есть значения в диапазоне [0,1].
Кстати, на КДПВ указано поведение данной метрики, вернее не целиком метрики, а ее части (MAE на логарифм смещений предсказаний) при всех комбинациях предсказания и истинного значения на всем диапазоне [0,1].
Если внимательно посмотреть на формулу метрики, то: с одной стороны, данная метрика примерно соответствует среднегеометрической средней отношений предсказаний и истинного значения (со смещением), что явно лучше, чем среднеарифметическая метрика (по причине более низкого итогового результата).
Мной были рассмотрены следующие варианты отклика – оригинальные доли, логарифмирование долей, переход к абсолютным значениям количества пользователей, их логарифмирование с различными смещениями (здесь была попытка использовать одно унифицированное смещение при переходе к абсолютным значениям, так как смещение 0.
005 указано для долей, а аудитория была разной, от 300 до 2500, поэтому смещение должно быть в границах от 1 до 12, но я проверял только значения 1 и 10), и корень из абсолютного значения людей просматриваемых объявление.На картинке выше приведены результаты по двум моделям, которые тренировались на разный отклик: на исходные доли аудитории и на абсолютное число участников.
На верхней диаграмме приведены отсортированные значения истинного отклика (по долям первого просмотра) и предсказанные значения по обоим моделям. Сразу видно, что большая часть значений отклика достаточно малая, так медианное значение около 5%, и это только для первого просмотра (для второго просмотра медиана уже менее 1%, а для третьего практически 0%, а для данной метрики малые значения и ошибки на них это весьма неприятно). Также на данной диаграмме явно видно, что модель на абсолютные значения качественно лучше, разброс по оценкам достаточно минимальный, и, несмотря на то, что визуально на графике на малых значениях отклонения почти не видны, в итоге именно ошибки на этих малых значениях сильно влияют на итоговый результат.
На средней диаграмме показана ошибка каждого отсортированного предсказания, видны сильные ошибки на малых значениях и уменьшение их с увеличением значений отклика.
На нижней диаграмме уже строится диаграмма непосредственно целевой метрики накопленным итогом по всем отсортированным значениям. Какие же выводы из всего этого? Первый это то, что выбранный отклик сильно влияет на результаты модели, но об этом ниже, второй вывод, особое внимание обращать на малые значения, особенно близкие к нулю, очевидно, что модели не всегда смогут предсказывать чистый нуль, поэтому необходимы корректировки. А ошибки на больших значениях не так важны, во-первых, их относительно мало, во-вторых, процентная ошибка на больших значениях будет мала, и при этом она внесет минимальный итоговый вклад в метрику.
В итоге, по результатам многочисленных экспериментов, победителем с явным отрывом оказался отклик — корень из абсолютных значений пользователей. При этом на разных предсказаниях (на 1, 2, 3 просмотра), иногда побеждали и модели с логарифмированием абсолютных значений, это связано с явным преобладанием 0 в откликах, и, как следствие, логарифмирование с каким-то смещением подходило лучше. Но если оценивать в среднем, то простой корень без всяких смещений показывал хорошие стабильные результаты, поэтому хотелось не усложнять решение, а остановиться на простом унифицированном способе — просто корень из людей.
Чем обусловлено то, что переход к людям значительно улучшает результат относительно долей (почти в 2 раза)?
Видимо дело в том, что переходя к людям, домножая долю на аудиторию, или что тоже самое, что деля все предикторы на эту же аудиторию, мы переходим в размерность относительно «одного человека», а учитывая, что в основе моей модели — регрессии, итоговая оценка есть некая взвешенная оценка вероятности относительно каждого предиктора. Вполне возможно, что если нормировать на аудиторию только часть предикторов, например, из предикторов первой группы (сумма по всем парам, например), то это нормировка тем самым приближала бы размерности всех предикторов к единой системе отчета (на одну персону), и итоговая регрессия, ее отклик, была бы не что иное, как средневзвешенная сумма вкладов каждого предиктора (которые и характеризуют одного человека) на итоговую вероятность просмотра, то возможно и результат был бы лучше.
Но на момент решения конкурса с этой стороны я не подходил и работал исключительно с трансформированным откликом.Модель
На самом деле данный раздел необходимо было ставить выше, так как именно из-за этой модели, приходилось подбирать вид отклика и необходимые используемые предикторы под него (модель подстраивалась под данные) и, так или иначе, даже на разных предикторах можно было выйти на приемлемый результат около 15%. Но мне хотелось, чтобы именно в среднем было какое-то обоснование выбора конкретных предикторов, поэтому на валидации и отбирались комбинации предикторов.
Мной использовалась модель из семейства деревьев регрессионных моделей, а именно модель cubist (модель 1992! года), и ее реализация в одноименном пакете в R. Вернее, итоговый результат это среднегеометрическая средняя двух наборов моделей, каждый из которых состоял из 3 отдельных моделей, но каскадом: предсказание предыдущей модели (на 1 просмотр) использовалось как предиктор для второй и третьей модели, а итоговое предсказание на второй просмотр как предиктор на третью модель.
А благодаря каскаду моделей, модель опосредованно “понимала” (так как регрессии), что каждый следующий отклик «цепляется» за этот ранее предсказанный ответ предыдущей оценки, а остальные предикторы корректируют ответ, который должен быть не больше предыдущего. Также мной проверялись и три отдельные модели, предсказывающие отклики по отдельности. Результат был слабее из-за обилия нулей при вторых и третьих просмотрах, семейство регрессий не могло достаточно точно уходить в 0, а когда мы добавляем «поводыря» предыдущей оценки, которая уже 0 или близка к нему, получаемое семейство регрессий также падает в окрестность данного значения и корректирует лишь отклик на второй и третий просмотр.
Чем же хороша данная модель?
Увидев задачу я сразу вспомнил про данную модель, так как на одном из предыдущих конкурсов в сопоставимой задаче (линейные связи и их корректировки) она оказалась также одной из лучших, да и в целом, у нас здесь достаточно линейные данные, есть явная зависимость между количествами просмотров (второй меньше первого, третий меньше второго), данных немного — всего 1008 наблюдений, есть небольшое число предикторов, вероятно какие-то линейные-ломаные зависимости. К тому же данная модель очень быстра, построение занимало несколько секунд, поэтому ей было удобно тестировать многие гипотезы. Да и еще, у нее нет гиперпараметров (за исключением соседей (еще один параметр корректирующий прогноз), который я не использовал), на которых можно было бы переобучиться.
Как же получается предсказание в данной модели по одному дереву?
В отличие от классических деревьев регрессии, где в узле остается одно финальное предсказание, здесь используется начальный набор из 100 правил (которые в итоге значительно сокращаются, в среднем на одно дерево, оставалось порядка 10-20 правил), и в терминальном узле используется линейная регрессия на подмножестве предикторов, а итоговый прогноз есть взвешенная комбинация прогнозов, находящихся на одном пути по дереву, но и это еще не все: также используются комитеты (аналог итераций в бустинге), то есть строятся следующие деревья, которые корректируют ответ предыдущей модели (заниженную увеличивают, завышенную уменьшают) и итоговый ответ есть среднее по всем комитетам.
Более подробно о данной модели, критериях расщепления, сглаживании предсказаний можно посмотреть в презентации авторов пакета или же в публикациях авторов на сайте.
Корректировки
Дополнительно использовались небольшие корректировки предсказаний, а именно: при переходе от абсолютного числа людей к их долям потенциально возникали ситуации очень малых значений (положительные, чуть более 0, или больше 1), и если в случае значений больше 1, их корректировка не играла большей роли (вероятно таких перелетов было мало, а если и были, то не значительные), то вот в случае малых значений, это было относительно критично. Путем рассуждения было принято, что если я предсказываю например 1 человека (или 0.5 человека, округления не осуществлялось), то при максимальной аудитории в 2500 (это при известных данных в трейне, что реально происходит на тестовых данных, совершенно не известно), что составляет 0.0004 (кстати и в трейне, минимальное значение 0. 0004), значит где-то в окрестностях этого значения необходимо меньшие значения обращать в 0, а учитывая, что у меня модели построены цепочкой, и от предсказанного нуля зависит построение следующей модели и ее предсказаний, и т.д. это влияло достаточно сильно.
Подбирать порог на валидации смысла особо не было (т.к. модель и так подстраивается под эти данные, да и я знаю распределение), поэтому поглядывал на паблик (для некоторых подбираемых значений), но в итоге все равно для одной тройки моделей я оставил красивый порог округления в 0.0005, а для второй теоретические 0.0004.
Корректировка сверху была проще, значения больше 0.95 обращать в 0.95, 0.95 было принято исходя из максимальной доли в тестовых данных, с большим запасом (в трейне максимум 0.93), эта корректировка практически не влияла на паблик (единичные вылеты видимо в паблике), оставил исключительно для безопасности на приват. И еще была добавлена корректировка, связанная с нулями, если на первом просмотре предсказание нулевое, то несмотря на предсказания моделей на втором и третьем просмотре, их предсказания тоже уходят в 0, это влияло не сильно, где-то второй знак (все же модель практически всегда и так сама это (меньше предыдущего и к нулю) делала), но оставлено для безопасности на привате.
Результаты
Результаты очень зависели от выбранного типа отклика и отобранных предикторов, например, даже если предсказывать доли, или что еще лучше их логарифм, то можно было отобрать другие предикторы и результат был бы около 16%, а если перейти к абсолютным значениям и также переотобрать предикторы, то там уже все начиналось около 15%, поэтому это и стало моим бейзлайном.
И кстати этих результатов было уже достаточно чтобы остаться в пятерке лидеров, но интересно было «повыжимать» побольше.
И так, что же резко улучшило эти 15%?
В общем-то, только добавление часов, просто часов (время начала и конца), сразу дало 13.97%, изменение их на синусы-косинусы улучшило до 13.44%, ну а дальше улучшение до 13.25% было округлением малых значений в нуль, и среднегеометрическая средняя двух моделей, то есть это уже было больше тюнинг под тест (паблик), и из-за этого я все-таки немного переподогнался под паблик.
В этом конкурсе необходимо было выбрать одно решение. Сейчас, поглядывая в ЛК, вижу, что мое выбранное решение, оказалось почти лучшим и на привате (место не изменилось) (лучший приват меньше на 0.02 п.п.), но если брать отправки в которых не так округлялся ответ, то на привате они были чуть хуже — 13.6%, то есть и сильного переобучения под паблик не было, но и очень большой роли весь этот посттюнинг и не играл.
В итоге основной задел успеха: предикторы, отобранные под выбранный отклик, модель cubist, каскад моделей(1->2->3) и временные предикторы (sin, cos).
Заключение
Несмотря на то, что призеры первых пяти мест использовали различные модели, в том числе и современные (1 место – SVR, 2 место – catboost, 3 место – neural net, 5 место – lightgbm, хотя у этих призеров были гораздо более сложные предикторы), я занял 4 место используя одну из старейших, классических моделей 1992 года (даже идеи SVR появились позже) на достаточно простых и очевидных предикторах, что еще раз подтверждает: не всегда достаточно бустить на сгенерированных предикторах (эти подходы были сильно ниже в итоговом рейтинге, около 20%), здесь играет значительную роль и здравый смысл предикторов, и трансформация отклика, и выбор функции потерь в моделях (при наличии).
В целом, конкурс получился интересным и творческим, с соответствующими выводами.
Надеюсь, на финальном (очном) этапе конкурса задача будет не менее интересной.
как организовать сложный спецпроект с селебрити
Встреча со звездой — всегда желанный подарок: это возможность стать ближе к своему кумиру, получить заряд вдохновения и просто приятно провести время. Так решила команда «VK Знакомств» и устроила масштабный конкурс ко Дню всех влюблённых. Пользователи дейтинг-сервиса смогли выиграть свидание с Jony или Мари Краймбрери в романтичной обстановке катка ВДНХ. Какие нюансы важно учесть в организации спецпроекта с селебрити и как охватить 15 млн пользователей, команда проекта рассказала Sostav.
Цели и задачи конкурса
«VK Знакомства» — это дейтинг-сервис, где своего человека можно найти по общим интересам, работает по классической механике свайпов. Но в отличие от других сервисов здесь ничего не нужно скачивать: это мини-приложение, расположенное внутри привычной соцсети.
Перед командой стояли две основные цели:
- повысить лояльность пользователей «VK Знакомств»;
- привлечь новых пользователей — фанатов селебрити и людей, которые смогут познакомиться с сервисом благодаря конкурсу.
Ориентировались на молодую аудиторию — девушек и юношей от 18 и 24 лет. Поэтому и звёзд выбрали соответствующих: Jony и Мари Краймбрери пользуются большой популярностью среди пользователей ВКонтакте. Исполнители выступали на VK Fest, а хит Jony попал в топ-30 самых прослушиваемых треков VK Музыки по итогам 2022 года.
Механика конкурса
Конкурс проходил с 18 января по 5 февраля 2023 года. Специально для него Jony и Мари Краймбрери разместили в сервисе конкурсные карточки. Они показывались среди анкет пользователей «VK Знакомств».
Пока случайный пользователь искал пару для романтического или дружеского общения, он мог свайпнуть вправо и увидеть анкету звезды. Претендентам на свидание нужно было не только найти анкеты артистов, но и выполнить задания от чат-бота. В том числе ответить на вопросы о биографии и творчестве исполнителей: например, какое музыкальное образование получил Jony или какую породу кошек любит Мари Краймбрери. И, конечно, продолжить строки из треков исполнителей.
Таким образом, чтобы присоединиться к розыгрышу, нужно было выполнить несколько условий.
- Зайти в сервис «VK Знакомства».
- Создать анкету, если её не было.
- Найти карточки с артистами и нажать на кнопку «Участвовать».
- Выполнить несложные задания: ответить на вопросы чат-бота и установить специальный эмодзи-статус, который отображается рядом с именем профиля «ВКонтакте».
Участниками конкурса могли стать все пользователи «VK Знакомств». Аудиторию таргетировали по геопозиции: показывали карточки звёзд жителям Москвы и Московской области, а также туристам, которые заехали в столицу. А в промоматериалах использовали специальные ссылки, где не учитывалась география. Так что победителем мог стать любой житель России, если он был готов приехать в Москву.
Встречи проходили на кате ВДНХ, самом большом в городе.
Как привлекали пользователей
Маркетинговая поддержка проекта проводилась со стороны «VK Знакомств», ВДНХ и самих звёзд.
Инструменты, которые использовали «VK Знакомства»:
- промовиджет на вкладке «Сервисы» в приложении «ВКонтакте»;
- анонсы в сообществе дейтинг-сервиса;
- таргетированная реклама «ВКонтакте»;
- пуш-уведомления на аудиторию сервиса;
- анонсы акции в СМИ — в медиа о селебрити и звёздной жизни;
- интервью с победителями об их впечатлениях.
В итоге удалось охватить 11,6 млн человек.
Инструменты, которые использовала ВДНХ:
- размещение ролика на диджитал-баннерах на катке;
- размещение информации в сервисе ВДНХ ВКонтакте;
- анонс конкурса на сайте ВДНХ;
- посты в соцсетях ВДНХ.
В итоге удалось охватить 755 тыс. человек.
Инструменты, которые использовали звёзды:
- записи в сообществах исполнителей «ВКонтакте» с призывом к участию в конкурсе;
- ролики в «VK Клипах» о предстоящем розыгрыше.
Охват — 1,47 млн человек.
Свидания со звёздами
Встречи победителей с селебрити прошли насыщенно: счастливчики выпили по чашечке чая и покатались на коньках с кумирами. Во время свиданий тренер по фигурному катанию дал каждому участнику небольшой мастер-класс. Такое занятие — не только возможность научить героев чему-то новому, но и способ разрядить обстановку, чтобы всем было комфортно на площадке. И конечно, не обошлось и без общения со звёздами наедине.
С Мари Краймбрери встретился пользователь Юра Золотухин. Ребята успели поговорить на личные темы: Юра рассказал, что работает в IT-компании. А Мари ответила, что хотела бы запустить своё приложение.
На свидание с Jony отправилась Альбина Мирзоева.
Чтобы быстрее узнать друг друга, обе пары могли использовать карточки с вопросами от «VK Знакомств». Такая же функция доступна и всем пользователям онлайн в чатах: после мэтча сервис предлагает собеседникам случайный вопрос. На него нужно дать ответ, и тогда завязать беседу будет проще.
Инсайты проекта
При работе над проектом команда столкнулась со множеством любопытных деталей. Что нужно сделать, чтобы успешно провести конкурс с участием звёзд:
Составить брифы с учётом особенностей селебрити. Для размещения записей «ВКонтакте» и роликов в «VK Клипах» от артистов готовили брифы. Здесь важен индивидуальный подход. Для кого-то из звёзд стоит прописать подробные условия, вплоть до мельчайших деталей. А кто-то так вдохновляется идеей, что предлагает своё видение.
О чём просили звёзд в брифах:
- подчеркнуть преимущества сервиса — в первую очередь мэтчинг по интересам;
- подробно рассказать про механику конкурса, чтобы все условия были понятны пользователям;
- не использовать одежду с выделяющимся брендингом;
- не упоминать конкурентов сервиса.
Например, в брифе для Мари Краймбрери прописали просьбу придерживаться фирменного стиля «VK Знакомств» в коммуникациях. Договорились, что в посте и клипах она будет использовать его атрибуты — неоновую подсветку.
С вниманием отнестись к пожеланиям звёзд. Конечно, при работе со звёздами важно учитывать и их личные предпочтения. Например, оказалось, Мари не любит холод и каталась на коньках всего пару раз в жизни. Так что сразу стало понятно, что понадобится тренер для сопровождения.
Продумать чёткую механику подведения итогов. Чтобы подвести итоги конкурса, знаменитости лично нажали на кнопку рандомайзера и определили двух счастливчиков, которые отправились на свидания. Рандомайзер был запущен среди всех, кто выполнил условия конкурса.
Сначала система отбирала людей, которые выполнили все условия розыгрыша, а затем команда перепроверяла всё вручную, чтобы никого не потерять. Это трудоёмкий и долгий процесс, который сложно показать в видео. Поэтому не смогли подвести результаты в прямом эфире. Зато заранее подготовили ответ для всех, кого это могло смутить, где подробно разъяснили ситуацию.
Подготовиться к негативу. Любой конкурс вызывает дискуссию о его прозрачности: негатив неизбежен, и нужно уметь с ним работать. Команда проекта столкнулись с сомнениями, когда выяснилось, что до свидания на катке победительница Альбина уже пересекалась с Jony — и даже записала короткое видео вместе с артистом. Этот ролик нашли поклонники звезды.
Сперва уточнили у Jony, знал ли он победительницу. А когда оказалось, что нет, максимально открыто и скрупулёзно объясняли всем: это просто совпадение.
Ответ пользователям:
По поводу фотографий победительницы с Jony и его друзьями: нам кажется, это нормально для поклонника — искать встречи с любимым артистом на мероприятиях, конкурсах или через нескольких рукопожатий. Вполне возможно, что Альбина так и делает. Поэтому у неё в копилке есть фотографии или видео с Jony, его песни в каверах, а теперь и возможность увидеть его на свидании. Мы ещё раз поздравляем её!
Продумать юридические тонкости. Ещё в работе с селебрити важно обозначать права на использование имени и фото. Здесь нужно учитывать все активности — как маркетинговые, так и PR. Иначе для каждого дополнительного размещения придётся заключать новый договор, а это много сил, времени и, возможно, дополнительный бюджет.
Кросс-командные взаимодействия. Проект создавали ребята из разных юнитов: команды маркетинга суперприложения «ВКонтакте» и партнёрского маркетинга, PR-команда, департамент дизайна, юридический департамент. У маркетинга суперприложения «ВКонтакте», куда входит маркетинг VK Знакомств, была задача выполнять свои цели и координировать работу всех команд.
Итоги конкурса
Работа над проектом длилась два месяца. В основной команде было 15 человек — каждый отвечал за своё направление.
Результаты в цифрах:
- 150 тыс. человек увидели анкеты знаменитостей в сервисе;
- 24 тыс. человек приняли участие в конкурсе;
- 8,7 млн человек прочитали в СМИ о розыгрыше;
- 14,7 млн человек составил суммарный охват проекта.
По итогам конкурса вышло интервью с его победителями. Юра и Альбина рассказали, как прошли их встречи со звёздами и какое впечатление производят знаменитости в реальной жизни. Необычным источником органического трафика стали медиа Азербайджана. Jony родом из Баку, поэтому локальные СМИ заинтересовались конкурсом и с удовольствием поговорили со счастливой победительницей.
Евгения Зибарева, директор по развитию бизнеса «ВКонтакте»:
Конкурсы со звёздами помогают привлечь внимание — об этом говорят миллионные охваты. Но, помимо прочего, это способ наладить эмоциональный контакт с аудиторией: для многих встреча с кумиром — мечта, и мы помогаем её осуществить. Всё это укрепляет лояльность и помогает выстраивать долгосрочные отношения с пользователями. А именно такую цель мы ставили перед собой в начале проекта.
Конкурс ИТМО ВКонтакте для школьников
В этом году уже в третий раз Университет ИТМО совместно с российской социальной сетью ВКонтакте организует конкурс «ИТМО ВКонтакте» для школьников. Главная фишка конкурса в том, что за победу вы получаете десять дополнительных баллов к общему баллу ЕГЭ. Регистрация открыта до 10 марта. В этой статье мы расскажем вам все о правилах, а также поделимся информацией о прошлогодних победителях, которые стали или хотят стать студентами Университета ИТМО.
Для участия в конкурсе школьникам необходимо вступить в сообщество конкурса в ВК, заполнить заявку в специальном приложении и выполнить задания после публикации. Конкурс проводится в два тура: первый тур проводится дистанционно с с 1 февраля по 10 марта , затем второй тур , который пройдет в Университете ИТМО 5-7 апреля .
Конкурс проводится по шести дисциплинам, таким как математика, физика, химия, социальные науки, английский язык и информатика. В первом туре вам дается час на выполнение всех заданий по каждому предмету, но вы можете выбрать любое количество дисциплин. Что делает этот конкурс таким удобным, так это то, что все общение осуществляется через социальную сеть ВКонтакте. Второй тур длится шесть часов, но на одну дисциплину можно потратить только два часа.
ИТМО ВК 2018Еще одним преимуществом является то, что вы также можете подать заявку на получение гранта на поездку, который покроет проезд в Санкт-Петербург и обратно, а также расходы на проживание во время финального тура. Всего в прошлом году гранты на проезд получили десять школьников.
Елизавета Медведева, 1 курс бакалавриата факультета программной инженерии и компьютерных систем
Я участвовала в олимпиаде ИТМО ВКонтакте в 2018 году, когда училась в 11 классе. Я очень хотела поступить в Университет ИТМО и постоянно искала конкурсы для школьников. Так я узнал об этом конкурсе. Я выбрал информатику, математику и физику, но решил попробовать свои силы и в других дисциплинах, что в итоге помогло мне выиграть грант на поездку в финальный тур.
Елизавета Медведева в Университете ИТМОК сожалению, по информатике у меня не получилось, но я старалась по математике и физике, и это окупилось, хотя я все равно была очень удивлена, когда объявили победителей и я оказалась среди них. Дополнительные десять баллов действительно имели значение и помогли мне осуществить мою мечту.
Задания действительно различались по уровню сложности: некоторые из них были очень простыми, другие требовали больше времени и усилий, а иногда требовали нестандартного мышления и терпения. Однако моей самой большой проблемой было успокоиться и сконцентрироваться. Это была самая трудная часть для меня.
Не могу в полной мере описать свои ощущения от конкурса, но больше всего меня привлекла атмосфера любви и заботы в Университете ИТМО. Помимо конкурса, нас также пригласили на экскурсию по городу, организованную сотрудниками Университета ИТМО, и вручили замечательные подарки.
Подарки от ИТМО и ВКФилипп Здоров, 1 курс бакалавриата факультета инфокоммуникационных технологий
Я тоже принимал участие в конкурсе в прошлом году. Дело в том, что учиться в ИТМО я мечтала, но некоторые родственники эту идею не поддержали, поэтому единственным шансом поехать в Санкт-Петербург и попасть на финальный тур был грант на проезд. Вот почему я решил попробовать свои силы во всех дисциплинах, даже в социальных науках, которые на самом деле не по мне.
Первый раунд закончился, и мы все ждали результатов. Можете представить мое волнение, когда я узнал, что мои усилия окупились, и я получил грант на путешествие? Так мне удалось приехать в Петербург. И хотя я не выиграл финальный тур и не получил дополнительных баллов, я влюбился в университет и все равно принял решение учиться здесь.
Александр Осликов , учащийся 11 класса, г. Ставрополь
Участвую в этом конкурсе уже третий раз. 2018 год был для меня очень удачным, так как мне дали грант на проезд и проживание в Санкт-Петербурге, и я ухватился за свой шанс. Я соревновался по всем дисциплинам в первом туре и вышел в финал по четырем: информатика, математика, физика и английский язык. Я получил наивысший балл по информатике и был награжден сертификатом второго места.
ИТМО ВК 2018Хочу отметить, что конкурс очень хорошо организован. Теперь рекомендую всем своим друзьям: задания относительно простые, а бонусы и призы просто потрясающие! Что касается планов на будущее, то, конечно же, я планирую поступать в Университет ИТМО. Я уже зарегистрировался на конкурс и с нетерпением жду даты начала.
Климачева Екатерина, ученица 10-го класса, г. Санкт-Петербург
Я участвовала в олимпиаде в прошлом году, когда стала победительницей в двух дисциплинах, математике и английском языке. На мой взгляд, задачи довольно сложные, но не слишком сложные. Мне очень понравился процесс, все было очень хорошо спланировано и продумано. Для меня ИТМО ВКонтакте — это в первую очередь возможность проверить свои знания и расширить кругозор.
Вернуться к началу
404 Не найдено – Кардиостимулятор Австралия
0,00 долл. США | ||||
Перевозки | ||||
Общий |
США—АфганистанАландские островаАлбанияАлжирАндорраАнголаАнгильяАнтигуа и БарбудаАргентинаАрменияАрубаАвстралияАвстрияАзербайджанБагамыБахрейнБангладешБарбадосБеларусьБельгияБелизБенинБермудыБутанБоливияБосния и ГерцеговинаБотсванаОстров БувеБразилияБританская территория в Индийском океанеБританские Виргинские острова БрунейБолгарияБуркина-ФасоБурундиКамбоджаКамерунКанадаКанадаКабо-ВердеКаймановы островаЦентральноафриканская РеспубликаЧадЧилиКитайОстров РождестваКокосовые (Килинг) островаКолумбияКоморыКонго — БраззавильКонго — Киншаса Острова КукаКоста-РикаХорватияКубаКюрасаоКипрЧехияКот-д’ИвуарДанияДжибутиДоминикаДоминика Миниканская РеспубликаЭквадорЕгипетСальвадорЭкваториальная ГвинеяЭритреяЭстонияЭфиопияФолклендские островаФарерские островаФиджиФинляндияФранцияФранцузская ГвианаФранцузская ПолинезияФранцузские Южные ТерриторииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГватемалаГернсиГвинеяГвинея-БисауГайанаГаитиHeard & McDon альд островаГондурасГонконг САР КитайВенгрияИсландияИндияИндонезияИранИракИрландияОстров МэнИзраильИталияЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКосовоКувейтКыргызстанЛаосЛатвияЛиванЛесотоЛиберияЛивияЛихтенштейнЛитваЛюксембургМакао САР КитайМакедонияМадагаскар МалавиМалайзияМальдивыМалиМальтаМартиникаМавританияМаврикийМайоттаМексикаМолдоваМонакоМонголияЧерногорияМонтсерратМароккоМозамбикМьянма (Бирма)НамибияНауруНепалНидерландыНидерландские Антильские островаНовая КаледонияНовая ЗеландияНикарагуаНигерНигерияНиуэ Остров НорфолкСеверная КореяНорвегияОманПакистанПалестина ан ТерриторииПанамаПапуа-Новая ГвинеяПарагвайПеруФилиппиныПиткэрнПольшаПортугалияКатарРеюньонРумынияРоссияРуандаСент-МартинСамоаСан-МариноСан-Томе и ПринсипиСаудовская АравияСенегалСербияСейшельские островаСьерра-ЛеонеСингапурСловакияСловенияСоломоновы островаСомалиЮжная АфрикаЮжная Джорджия и Южные Сандвичевы островаЮжная Корея Южный СуданИспанияШри-ЛанкаSt.