Работы николы тесла – Эйнштейн, Планк, Бор, Ли де Форест, Рентген и другие о значении работ Николы Теслы — Интересные данные про Теслу

Разгадка электромобиля Николы Тесла — Изобретения и научные работы

Разгадка электромобиля Николы Тесла

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.


Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.
На самом деле ЭЛ. Двигатель не потребляет никакого тока.
В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.

Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.


Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.


Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.


Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.


Принцип работы электроавтомобиля Теслы

Согласно закону причинно следственных связей, если второе вытекает из первого, то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.
Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется «прямой пьезоэлектрический эффект». В тоже время характерно и обратное — возникновения механических деформаций под действием электрического поля — «обратный пьезоэлектрический эффект». Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.

Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи — электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом — выделение тепла.


При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений, на которые принято закрывать глаза.


Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потери энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с «вязкостью» эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

 

СХЕМА ПОТЕРЬ ЭНЕРГИИ В ОБЫЧНОМ ЭЛЕКТРОДВИГАТЕЛЕ


Что сделал Тесла. Тесла понял, что электродвигатель, который неизбежно «гонит волны» в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.


С другой стороны Тесла хорошо видел, что волны в эфире могут быть не побочным продуктом работы электродвигателя, не паразитарными потерями, а движущей силой электродвигателя, если эти волны поддерживать при минимальном расходе энергии. Как поддерживать эти волны Тесла хорошо знал. Для этого нужны резонансные ВЧ колебания. Тонкая природа эфира обуславливает необходимость высоких частот для достижения резонанса. Как известно, резонанс наступает при приближении частоты внешнего воздействия (колебания ВЧ генератора) к одной из тех частот, с которыми происходят собственные колебания в системе (в данном случае, принудительные колебания в эфире затухающие медленно относительно частоты ВЧ генератора), возникающие в результате внешнего принудительного воздействия. Оптимальное поддержание волн в эфире представляет собой процесс резонансного накачивания стоячей волны вокруг ВЧ генератора.


Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостиницы, собрал ВЧ генератор, устройство, которое «поднимает волну» в пространстве где работает электродвигатель. (Генератор ВЧ, а не низкочастотный просто, потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонансе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 МГц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем.

 

ВЧ генератор потребляет немного энергии. Как устройство он оптимален (в отличие от электродвигателя) для создания и поддержания волн в эфире. А волны в эфире, если они в резонансе с колебательным контуром работающего двигателя, превращаются в движущую силу (а не в паразитарные потери) для совершения электродвигателем работы. Питание двигателю при такой схеме не нужно. Питание нужно чтобы гнать волну, вызывающую сопротивление среды. А здесь сама среда держит волну и поддерживает вращение двигателя, который с этой волной в резонансе. Таким образом ел. двигатель превращается в генератор, который преобразует энергию колебаний эфира через свое вращение в электрический ток, который из него истекает.


ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той энергии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

 

Принцип работы электродвигателя в схеме, использованной Теслой.



Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Здесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигаель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разуманя организация процесса.


Фаза всасывания и рассеивания. На фазе всасывания конденсаторы заряжаются. На фазе рассевания отдают в цепь, компенсируя потери. Таким образом, КПД не 90% а возможно 99%. Возможно ли увеличив количество конденсаторов получить больше чем 99%? По видимому нет. Мы не можем собрать на фазе рассеивания больше, чем двигатель отдает. Поэтому дело не в количестве емкостей, а в расчете оптимальной емкости.


Пьезоэлектричество (от греч. piezo — давлю и электричество), явления возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.


Кварцевый генератор, маломощный генератор электрических колебаний высокой частоты, в котором роль резонансного контура играет кварцевый резонатор — пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. При деформации кварцевой пластинки на её поверхностях появляются электрические заряды, величина и знак которых зависят от величины и направления деформации. В свою очередь, появление на поверхности пластины электрических зарядов вызывает её механическую деформацию (см. Пьезоэлектричество). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот. К. г. характеризуются высокой стабильностью частоты генерируемых колебаний: Dn/n, где Dn — отклонение (уход) частоты от её номинального значения n составляет для небольших промежутков времени 10-3—10-5%, что обусловлено высокой добротностью (104—105) кварцевого резонатора (добротность обычного колебательного контура ~ 102).


Частота колебаний К. г. (от нескольких кГц до нескольких десятков МГц) зависит от размеров кварцевого резонатора, упругости и пьезоэлектрической постоянных кварца, а также от того, как вырезан резонатор из кристалла. Например, для Х — среза кристалла кварца частота (в МГц) n=2,86/d, где d — толщина пластинки в мм.


Мощность К. г. не превышает нескольких десятков Вт. При более высокой мощности кварцевый резонатор разрушается под влиянием возникающих в нём механических напряжений.


К. г. с последующим преобразованием частоты колебаний (делением или умножением частоты) используются для измерения времени (кварцевые часы, квантовые часы) и в качестве стандартов частоты.


Естественная Анизотропия. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок Резонанс (франц. resonance, от лат. resono — звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы.


Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы). Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt, или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону . Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х — смещение массы от положения равновесия, k — коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий.


Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия. В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L, Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности, имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов. В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см. Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний . Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы.


Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами. Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала.


Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители).


В др. случаях Р. играет положительную роль, например: в радиотехнике Р. — почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций. Нужно подобрать емкость так, чтобы пошло смещение по фазе. Противофаза это аспект оппозиции. Совпадение — это аспект соединения. Соединения дает бросок, но и равное падение. Возможно, что максимальное содействие получается, когда работает аспект тригона. Это смещение по фазе не на 180%, а на 120%. Емкость должна быть рассчитана так, чтобы она давала смещение по фазе в 120%, возможно, что это даже лучше, чем соединение. Может именно поэтому, Тесла любил число 3. Потому что использовал тригональный резонанс. Тригональный резонанс, в отличие от резонанса соединения должен быть более мягкий (не деструктивный) и более стабильный, более живучий. Тригональный резонанс должен держать мощность и не идти в разнос. ВЧ резонанс создает накачку стоячей волны вокруг передатчика. Поддержание резонанса в эфире не требует большой мощности. В тоже время образовавшаяся стоячая волна может обладать огромной мощностью для совершения полезной работы. Этой мощности хватит и на поддержание работы генератора и на поддержание гораздо более мощных устройств.

 


«Pierce-Arrow», на котором Тесла установил электромотор
переменного тока мощностью в 80 л.с.
 

 

Разгадка электромобиля Николы Тесла — Изобретения и научные работы

Разгадка электромобиля Николы Тесла

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.


Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.
На самом деле ЭЛ. Двигатель не потребляет никакого тока.
В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.
Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.


Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.


Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.


Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.


Принцип работы электроавтомобиля Теслы

Согласно закону причинно следственных связей, если второе вытекает из первого, то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.
Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется «прямой пьезоэлектрический эффект». В тоже время характерно и обратное — возникновения механических деформаций под действием электрического поля — «обратный пьезоэлектрический эффект». Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.
Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи — электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом — выделение тепла.


При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений, на которые принято закрывать глаза.


Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потери энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с «вязкостью» эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

 

СХЕМА ПОТЕРЬ ЭНЕРГИИ В ОБЫЧНОМ ЭЛЕКТРОДВИГАТЕЛЕ


Что сделал Тесла. Тесла понял, что электродвигатель, который неизбежно «гонит волны» в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.


С другой стороны Тесла хорошо видел, что волны в эфире могут быть не побочным продуктом работы электродвигателя, не паразитарными потерями, а движущей силой электродвигателя, если эти волны поддерживать при минимальном расходе энергии. Как поддерживать эти волны Тесла хорошо знал. Для этого нужны резонансные ВЧ колебания. Тонкая природа эфира обуславливает необходимость высоких частот для достижения резонанса. Как известно, резонанс наступает при приближении частоты внешнего воздействия (колебания ВЧ генератора) к одной из тех частот, с которыми происходят собственные колебания в системе (в данном случае, принудительные колебания в эфире затухающие медленно относительно частоты ВЧ генератора), возникающие в результате внешнего принудительного воздействия. Оптимальное поддержание волн в эфире представляет собой процесс резонансного накачивания стоячей волны вокруг ВЧ генератора.


Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостиницы, собрал ВЧ генератор, устройство, которое «поднимает волну» в пространстве где работает электродвигатель. (Генератор ВЧ, а не низкочастотный просто, потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонансе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 МГц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем.

 

ВЧ генератор потребляет немного энергии. Как устройство он оптимален (в отличие от электродвигателя) для создания и поддержания волн в эфире. А волны в эфире, если они в резонансе с колебательным контуром работающего двигателя, превращаются в движущую силу (а не в паразитарные потери) для совершения электродвигателем работы. Питание двигателю при такой схеме не нужно. Питание нужно чтобы гнать волну, вызывающую сопротивление среды. А здесь сама среда держит волну и поддерживает вращение двигателя, который с этой волной в резонансе. Таким образом ел. двигатель превращается в генератор, который преобразует энергию колебаний эфира через свое вращение в электрический ток, который из него истекает.


ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той энергии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

 

Принцип работы электродвигателя в схеме, использованной Теслой.



Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Здесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигаель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разуманя организация процесса.


Фаза всасывания и рассеивания. На фазе всасывания конденсаторы заряжаются. На фазе рассевания отдают в цепь, компенсируя потери. Таким образом, КПД не 90% а возможно 99%. Возможно ли увеличив количество конденсаторов получить больше чем 99%? По видимому нет. Мы не можем собрать на фазе рассеивания больше, чем двигатель отдает. Поэтому дело не в количестве емкостей, а в расчете оптимальной емкости.


Пьезоэлектричество (от греч. piezo — давлю и электричество), явления возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.


Кварцевый генератор, маломощный генератор электрических колебаний высокой частоты, в котором роль резонансного контура играет кварцевый резонатор — пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. При деформации кварцевой пластинки на её поверхностях появляются электрические заряды, величина и знак которых зависят от величины и направления деформации. В свою очередь, появление на поверхности пластины электрических зарядов вызывает её механическую деформацию (см. Пьезоэлектричество). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот. К. г. характеризуются высокой стабильностью частоты генерируемых колебаний: Dn/n, где Dn — отклонение (уход) частоты от её номинального значения n составляет для небольших промежутков времени 10-3—10-5%, что обусловлено высокой добротностью (104—105) кварцевого резонатора (добротность обычного колебательного контура ~ 102).


Частота колебаний К. г. (от нескольких кГц до нескольких десятков МГц) зависит от размеров кварцевого резонатора, упругости и пьезоэлектрической постоянных кварца, а также от того, как вырезан резонатор из кристалла. Например, для Х — среза кристалла кварца частота (в МГц) n=2,86/d, где d — толщина пластинки в мм.


Мощность К. г. не превышает нескольких десятков Вт. При более высокой мощности кварцевый резонатор разрушается под влиянием возникающих в нём механических напряжений.


К. г. с последующим преобразованием частоты колебаний (делением или умножением частоты) используются для измерения времени (кварцевые часы, квантовые часы) и в качестве стандартов частоты.


Естественная Анизотропия. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок Резонанс (франц. resonance, от лат. resono — звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы.


Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы). Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt, или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону . Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х — смещение массы от положения равновесия, k — коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий.


Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия. В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L, Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности, имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов. В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см. Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний . Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы.


Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами. Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала.


Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители).


В др. случаях Р. играет положительную роль, например: в радиотехнике Р. — почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций. Нужно подобрать емкость так, чтобы пошло смещение по фазе. Противофаза это аспект оппозиции. Совпадение — это аспект соединения. Соединения дает бросок, но и равное падение. Возможно, что максимальное содействие получается, когда работает аспект тригона. Это смещение по фазе не на 180%, а на 120%. Емкость должна быть рассчитана так, чтобы она давала смещение по фазе в 120%, возможно, что это даже лучше, чем соединение. Может именно поэтому, Тесла любил число 3. Потому что использовал тригональный резонанс. Тригональный резонанс, в отличие от резонанса соединения должен быть более мягкий (не деструктивный) и более стабильный, более живучий. Тригональный резонанс должен держать мощность и не идти в разнос. ВЧ резонанс создает накачку стоячей волны вокруг передатчика. Поддержание резонанса в эфире не требует большой мощности. В тоже время образовавшаяся стоячая волна может обладать огромной мощностью для совершения полезной работы. Этой мощности хватит и на поддержание работы генератора и на поддержание гораздо более мощных устройств.

 


«Pierce-Arrow», на котором Тесла установил электромотор
переменного тока мощностью в 80 л.с.
 

 

Никола Тесла. Электричество, образующееся естественным путем

В июне 1900 года вышла статья Николы Тесла «Проблема увеличения энергии человечества».

В ней, кроме всего прочего, очень подробно изложены взгляды ученого на возможность использования энергии окружающей среды, а именно – атмосферного электричества. Вот фрагмент, заслуживающий внимания:

«Электричество, образующееся естественным путем, является еще одним источником энергии, который может стать доступным. В разрядах молнии содержится огромное количество электрической энергии, которую мы могли бы использовать путем ее преобразования и аккумуляции. Несколько лет тому назад я опубликовал описание метода преобразования электричества, который представляет первую часть задачи по аккумулированию энергии разряда молнии, хотя осуществить это будет трудно. Кроме того, известно, что электрические токи постоянно циркулируют сквозь землю, и между землей и каким-либо воздушным слоем существует разность электрических напряжений, которая изменяется пропорционально высоте.

В ходе недавних экспериментов я, в этой связи, открыл два новых важных явления. Одно из них состоит в том, что в проводе, один конец которого заземлен, а другой уходит высоко вверх, возникает ток, что происходит либо благодаря вращению Земли вокруг своей оси, либо благодаря ее поступательному движению. Однако еще нет уверенности в том, что ток станет постоянно проходить по проводу до тех пор, пока электричеству не будет создана возможность просачиваться в воздух. Его истекание в большой степени облегчится, если поднятый конец провода подсоединить к терминалу с большой поверхностью и множеством острых граней и шипов. Так мы сможем получать постоянный приток электрической энергии, просто удерживая провод на высоте, но, к сожалению, количество электричества, которое может быть получено таким способом, мало.

Второе явление, установленное мной, заключалось в том, что верхние слои воздуха имеют постоянные электрические заряды, противоположные заряду Земли. Так, по крайней мере, я интерпретировал свои наблюдения, из которых следует, что Земля с ее внутренней изолирующей и верхней проводящей оболочками образует сильно заряженный электрический конденсатор, содержащий, по всей вероятности, огромное количество электрической энергии, которую можно обратить на пользу человеку, если иметь возможность поднять терминал на большую высоту.»

 

Говоря о первой части задачи, Тесла, вероятно, имеет в виду метод, подробно описанный в патенте № 462418, полученном 3 ноября 1891 года (почти за 9 лет до публикации статьи).

В патенте описывается метод аккумулирования энергии источника в конденсаторе, который, затем, разряжается в рабочую цепь, содержащую преобразовательные устройства, которыми могут быть лампы, трансформаторы и т.п.

Работая над преобразователями высокой частоты, начиная с 1891 года, ученый разрабатывает множество видов преобразователей, а также тех или иных компонентов устройств.

8 декабря 1891 года, Тесла получает патент № 464667 «Электрический конденсатор». Предложенный конденсатор отличается тем, что в качестве диэлектрика применяется масло, а расстояние между металлическими обкладками может регулироваться. Целью изобретения было исключение из диэлектрика всех возможных пузырьков газа, которые, обычно, приводили к существенным потерям при работе с токами высокой частоты и высокого потенциала.

24 февраля 1893 года, читая лекцию сотрудникам Института Франклина в Филадельфии, Тесла затрагивает следующий важный аспект:

 

«Во-первых, очень важно было бы узнать, какова емкость Земли? И какой заряд она содержит при электризации? Хотя у нас нет положительных свидетельств тому, что рядом в пространстве есть другие тела, заряженные противоположным образом, вполне возможно, что Земля именно такое тело, ибо каков бы ни был процесс, результатом которого явилось отделение Земли — а именно таковы сегодня общепринятые взгляды на ее происхождение, — она должна была сохранить заряд, как это происходит во всех процессах механического деления. Если это заряженное тело, изолированное в пространстве, то его емкость должна быть крайне мала, менее одной тысячной фарады. Но верхние слои атмосферы — проводники, такой же может являться и среда за пределами атмосферы, а она может иметь противоположный заряд. Тогда емкость может быть несравнимо выше. В любом случае очень важно понять, какое количество электричества содержит Земля. Трудно сказать, получим ли мы когда-нибудь такие знания, но надеюсь, что получим, и именно при помощи электрического резонанса. Если мы когда-либо сможем установить, каков период колебаний Земли при возбуждении ее заряда по отношению к противоположно заряженному контуру, мы получим факт, скорее всего наиболее важный для благополучия всего человечества. Я предлагаю искать этот период при помощи электрического осциллятора, или источника переменного тока. Один из выводов, например, будет соединен с землей, или городским водопроводом, а другой с изолированным предметом больших размеров. Возможно, что верхние слои атмосферы или открытый космос, имеют противоположный заряд и вместе с Землей образуют конденсатор огромной емкости. В таком случае период колебаний может быть очень небольшим, и динамо-машина переменного тока могла бы отвечать целям эксперимента. Затем я бы преобразовал ток так, чтобы получить максимально возможный потенциал и соединил концы вторичной обмотки высокого напряжения с землей и изолированным телом. Варьируя частоту тока и тщательно выдерживая потенциал изолированного тела, а также наблюдая за возмущениями в различных соседних точках земной поверхности, можно обнаружить резонанс. Если, как и полагают большинство ученых, период достаточно мал, то динамо-машина не подойдет и придется построить соответствующий электрический осциллятор, и, возможно, такие быстрые колебания получить невозможно.»

Работая со своими преобразователями, Тесла отмечает, что у цепи, обладающей индуктивностью, вместе с распределенной емкостью, есть собственная резонансная частота. Иногда для получения необходимых параметров к катушке можно добавить параллельно конденсатор, однако, это не всегда удобно и целесообразно. В июле 1893 года Тесла подает заявку на получение патента и 9 января 1894 года, получает патент № 512340 «Катушка для электромагнитов».

Эта катушка отличалась тем, что намотана двумя параллельными проводами, которые соединены последовательно так, что конец одного провода соединялся с началом второго. Это делалось для того, чтобы увеличить разность потенциалов между двумя соседними витками. Как известно, работающая на резонансной частоте катушка (с собственной межвитковой емкостью), может накапливать энергию пропорционально квадрату напряжения между двумя соседними витками.

Поэтому такая катушка во много раз превосходит катушку с однопроводной намоткой. Поясним этот момент: пусть катушка имеет 500 витков в один слой, при этом напряжение на ее концах 500 вольт, значит разность потенциалов между двумя соседними витками 1 вольт. Теперь рассмотрим намотку в два провода, когда 500 витков получены соединением двух катушек из 250 витков каждая, по схеме из патента. Разность теперь не 1 вольт, а 250 вольт. Значит такая катушка может запасать в 62500 раз больше энергии ( 2502/12 = 62500).

Вероятно, Тесла использовал такие катушки в качестве дросселей (накопительных катушек). В патенте 568176 от 22 сентября 1896 года упоминается возможность обойтись без конденсатора, если сама первичная цепь обладает достаточной емкостью:

«Например, без дроссельной катушки как отдельного устройства можно вполне обойтись при условии, что цепь, в которой она могла бы быть, имеет достаточно высокую индуктивность, получаемую иными путями. Точно также, строго говоря, не обязателен и конденсатор, если сама цепь обладает достаточной емкостью для достижения желаемого результата.»

Рисунок из патента №568176

22 сентября 1896 года Тесла получает сразу пять патентов, которые описывают устройства, работающие примерно по аналогичному принципу, их разрядная первичная цепь везде одинакова:

№568176 «Устройство для генерирования токов высоких частот и потенциала»

№568177 «Устройство для получения озона»

№568178 «Метод регулирования аппаратуры для производства токов высоких частот»

№568179 «Метод и устройство для генерирования токов высоких частот»

№568180 «Устройство для генерирования токов высоких частот»

Из патента №568178:

«Известно, что любая электрическая цепь, если ее омическое сопротивление не превышает определенных пределов, имеет период собственных колебаний, аналогичный периоду колебаний подвешенной пружины. Для циклического заряда заданной цепи внешними периодическими импульсами и наиболее эффективного разряда частота подаваемых импульсов должна находиться в определенном отношении к частоте собственных колебаний цепи. Кроме того, период цепи разряда должен быть связан таким же отношением с периодом заряжающей цепи. Если условия таковы, что общий закон гармонических колебаний не нарушается, цепи входят в резонанс или электромагнитный синхронизм, для моей системы это весьма полезно. Поэтому на практике я регулирую электрические параметры цепи так, что условие резонанса в целом выполняется. С этой целью число импульсов тока, подаваемых за единицу времени в заряжающую цепь, делается равным периоду (частоте) собственных колебаний заряжающей цепи и такое же отношение поддерживается между заряжающей цепью и цепью разряда. Любое отступление от этого условия приведет к уменьшению выходной мощности, и я использую этот факт для ее регулирования варьированием частоты импульсов или вибраций в нескольких цепях

16 августа 1898 года Тесла получает семь патентов на различные контроллеры электрической цепи, задача которых – эффективная коммутация зарядной и разрядной цепей. Главная цель, которую преследовал ученый при совершенствованиях – снизить потери при размыкании и замыкании прерывателя, а также повысить, насколько это возможно, скорость коммутации и частоту.

Рисунок из патента №609245

Это следующие патенты:

№ 609245 «Контроллер электрической цепи»

№ 609246 «Контроллер электрической цепи»

№ 609247 «Контроллер электрической цепи»

№ 609248 «Контроллер электрической цепи»

№ 609249 «Контроллер электрической цепи»

№ 609250 «Электрическое зажигание для газовых двигателей»

№ 609251 «Контроллер электрической цепи»

Как видим, Тесла все же смог разработать контроллеры, дающие возможность получать очень высокую частоту прерываний.

В период с 1899 по 1900 годы он использует все свои практические наработки в лаборатории в Колорадо-Спрингс, где и проверяет на практике свои идеи. Рабочий дневник ученого содержит подробное описание проделанной работы.

Стандартная схема передатчика выглядит так:

Когда выключатель замкнут, зарядная катушка накапливает энергию, затем происходит размыкание, энергия, накопленная в катушке принимает форму высоковольтного импульса и устремляется в конденсатор, заряжая его, после этого вновь происходит замыкание, тогда энергия, накопленная в конденсаторе начинает совершать высокочастотные колебания в цепи разряда в то время, как зарядная катушка вновь накапливает энергию от источника. Вторичная обмотка, настроенная в резонанс, находится в несильной индуктивной связи с первичной обмоткой, чтобы свободные колебания могли проявиться с максимальной силой.

Изучив все зависимости и свойства такой системы, Тесла 18 января 1902 года подает заявку на «Устройство для передачи электрической энергии», патент же будет им получен только через 13 лет.

Это патент №1119732 от 1 декабря 1914 года.

Рисунок из патента №1119732

Из патента №1119732:

«Первичную обмотку можно возбуждать любым способом от подходящего источника G, который может быть генератором переменного тока или конденсатором, причем основное требование заключается в установлении резонанса, то есть вывод D должен зарядиться до максимального напряжения цепи… Если передатчик имеет большую мощность, то настройку следует производить с особенной тщательностью, в целях экономии и безопасности. Я показал, что в резонирующей цепи наподобие EABB’D можно вызвать электричество огромной силы, измеряемой сотнями и тысячами лошадиных сил… целесообразно начинать настройку со слабых и низкочастотных вынуждающих колебаний, постепенно усиливая их и наращивая частоту, пока не удастся добиться полного контроля над аппаратом.»

 

Становится ясно, что здесь воплощена идея Тесла, высказанная им во время выступления 24 февраля 1893 года о том, как необходимо взаимодействовать с электрическим зарядом Земли, а также способ правильной настройки, соответствующий идее. Отметим, что в патенте №787412, заявка на получение которого была подана 16 мая 1900 года, подробно описан принцип правильной настройки такой системы. Основы также описаны и в патенте №649621 от 15 мая 1900 года.

Примечателен тот факт, что изучая возможность использования энергии атмосферы, Тесла пробовал использовать преобразователь «статического» типа ( патент №685957 от 5 ноября 1901 года), предназначенный для использования энергии излучения, который оказался очень неэффективным в отличии от «кинетического» ( патент №1119732 ).

Рисунок из патента №685957

В статье от 16 октября 1927 года «Мировая система беспроводной передачи энергии» Тесла поясняет отличительную особенность своей системы от метода передачи энергии с помощью радиоволн:

«Чтобы добиться положительных результатов с помощью этого метода, будет, по-видимому, необходимо применять излучения с длиной волны несравнимо меньшей, чем излучаемое рефлектором лучистое тепло, световые, инфракрасные и ультрафиолетовые лучи. Вопреки моим неоднократным разъяснениям специалисты, по-видимому, не понимают, что посредством рефлекторов такая концентрация энергии, какую я получаю с помощью беспроводной энергетической установки, не может и не будет когда-либо достигнута, поскольку при передаче энергии таким способом приемник может улавливать лишь количество энергии, пропорциональное облучаемой площади, т.е. подвергающейся воздействию лучей, в то время как в моей системе он вбирает в себя энергию из безмерного резервуара в несравнимо большем количестве.»

Михаил Н.

При исследование устройств и патентов Николы Тесла, Вам в работе наверняка может понадобиться оборудование Hach Lange. Например различные колориметры, спектрофотометры и много другого качественного измерительного оборудования.

Эйнштейн, Планк, Бор, Ли де Форест, Рентген и другие о значении работ Николы Теслы — Интересные данные про Теслу

В Белграде, на улице Пролетарских бригад, 51, в прекрасном особняке помещается Национальный музей Николы Теслы. Весь первый этаж его занят под экспозицию великолепно выполненных действующих моделей приборов и аппаратов, изобретенных Николой Теслой, материалов, рассказывающих о его жизни и деятельности, различных документов, характеризующих творчество ученого. 

В верхнем этаже хранятся рукописи Николы Теслы, его записные книжки, письма к нему, книги из личной библиотеки и другие материалы, тщательно изучаемые небольшим коллективом научных работников.

Сколько еще неизвестного, нового, необычайного таят в себе эти драгоценные для всего человечества листки, написанные рукой удивительного человека! Только со временем, изучив это огромное наследство, мы сможем полностью оценить замечательное творчество одного из наиболее выдающихся и оригинальных ученых современности.

Но, не ожидая результатов этого изучения, попытаемся оценить значение творчества Николы Теслы по тем материалам, с которыми мы познакомились в предыдущих главах, и, главное, понять, что же помешало ему полностью осуществить его замыслы, идеи и намерения. В чем причина его постоянной «агонии неудач», лишь изредка сменявшейся «блаженством успеха»? Были ли виной этому только внешние причины, отсутствие средств, непонимание финансовыми кругами его выдающихся замыслов и инженерных проектов, или в самом его творчестве было нечто такое, что не дало возможности претворить в жизнь смелые мечты?

«Человечество всегда ставит перед собой только такие задачи, которые оно в состоянии разрешить»,— писал Маркс.

Человечество, но не отдельные особо одаренные великие ученые, умеющие видеть далеко вперед. И если эти ученые своим гениальным умом могут ясно представлять себе конечные цели развития науки или техники на определенном, весьма значительном отрезке истории, то человечество не может скачком, минуя промежуточные ступени развития, перешагнуть из одного периода развития техники в другой.

Еще в самом начале широкого практического использования электричества для различных производственных нужд многие выдающиеся ученые приняли участие в решении возникавших проблем.

Шаг за шагом они приближали создание электроэнергетической основы современной крупной промышленности. Различно значение их творчества для развития производительных сил человеческого общества, различен сам характер этого творчества. Одни шли путем чистой эмпирики, зачастую совершенно случайно делая выдающиеся открытия; другие имели ясное представление о стоящей задаче и находили ее решение путем глубокого теоретического осмысливания накопленных фактов.

Тесла был тем удивительным ученым, который не только разрешил основную проблему использования переменных токов для нужд электроэнергетики, но и сразу же понял, какое огромное значение в развитии человеческого общества будет иметь их широкое и всестороннее применение. Почти мгновенно охватил он своим умственным взором все многообразие возможных применений токов высокой частоты, которое и теперь, спустя семьдесят пять лет со времени его будапештского открытия, еще далеко не исчерпано и не будет исчерпано в ближайшие годы.

Но Тесла хотел сразу-же перевести все стороны практической жизни на основу своих открытий. Он хотел миновать множество промежуточных этапов развития техники, перескочить через них, создавая сразу то, к чему практически можно было подойти, лишь последовательно решая одну за другой задачи, выдвигаемые в ходе развития техники.

Большой ученый в области науки об электричестве, отдавший ей всю свою жизнь, он не учел, что и развитием человеческого общества также управляют определенные объективные законы. Знание этих законов, к которому Тесла приблизился в конце своей жизни, помогло бы ему избежать многих ошибок и наивных заблуждений.

То, что Никола Тесла действительно стал понимать свои ошибки, видно хотя бы из следующего. В последние годы своей жизни Тесла часто говорил, что он, по-видимому, действительно слишком рано требовал от людей понимания его проектов и, представляя себе значение их для развития науки и техники, не представлял условий, при которых они могли бы получить полное развитие. Критически оценивая результаты своей работы в области передачи электроэнергии без проводов, он говорил:

— Пожалуй, я действительно зашел слишком далеко вперед. Без нее еще можно обходиться до тех пор, пока моя многофазная система удовлетворяет потребности мира. Но на тот случай, когда возникнет необходимость, она (система передачи электроэнергии без проводов. — Б. Р.) уже готова.

Тесла горячо сочувствовал идеям коммунизма. Свидетельство тому не только уже отмеченное желание помочь молодой Советской России своими техническими знаниями, не только стремление быть полезным в организации борьбы с фашизмом, но и прямые высказывания о коммунизме, который он считал прогрессивным общественным строем. В одном из дошедших до нас документов — странице из записной книжки Николы Теслы — запечатлены его мысли о коммунизме.

«Коммунизм вполне осуществим и неизбежно явится системой будущего».

Несомненно, капиталистический строй с его противоречиями, его растлевающим влиянием на представителей интеллектуального труда не дал возможности правильно использовать выдающийся ум Николы Теслы, направить его на решение актуальных задач своего времени. Однако и личные черты его как ученого также не способствовали развитию его идей. По самому складу своего характера Тесла не был ученым, способным творить в коллективе. Он не мог, не хотел и не пытался создать вокруг себя коллектив ученых, которые могли бы продолжать разработку его идей, могли бы воплотить их в конкретные конструктивные формы, без чего было невозможно истинное Движение вперед. Такой коллектив (не мог сплотиться вокруг человека, для которого одним из обязательных условий творческой продуктивности было одиночество.

Большую часть жизни Тесла провел в своих лабораториях, заполненных сложными и почти всегда им самим сконструированными приборами. Но, несмотря на обширность областей его исследований, необычайность замыслов, у него всегда было очень мало ассистентов. Небольшой штат помощников был отобран с особой тщательностью, так как Тесла предъявлял к своим сотрудникам необычайно высокие требования. Блестящий конструктор и механик, ясно представлявший себе мысленно все детали проектируемого прибора и всю физическую картину эксперимента, он требовал и от других такой сметки и быстроты соображения, какой обладали немногие.

Давая задания, Тесла вызывал исполнителя и чертил на середине листа бумаги маленький эскиз, в любом случае не более нескольких сантиметров в каждом измерении. Все размеры он называл устно, а затем уничтожал чертеж и требовал точного выполнения задания. Обладая колоссальной памятью, он считал, что и другие наделены теми же способностями. Сообщая лишь минимальное количество исходных данных, Тесла требовал, чтобы все остальное ассистенты определяли сами.

Отчужденность Теслы от своих сотрудников была его характерной чертой. Будучи весьма общительным и оживленным собеседником, Тесла имел много друзей и почти не имел врагов. Но в то же время, располагая огромным количеством плодотворных идей, он никогда не находил нужным делиться ими со своими сотрудниками.

Полную противоположность Тесле представлял Эдисон, обладавший, если можно так выразиться, кооперативным складом ума. Он подробно знакомил своих помощников с творческими замыслами и являлся как бы катализатором творческого процесса всего коллектива.

Органическая неспособность Теслы работать с помощниками была его огромным недостатком и привела к неисчислимым потерям для науки. Множество идей, разработать которые он сам был не в состоянии из-за недостатка времени, так и остались невыполненными и невысказанными им. Даже его неспособность извлекать из своих изобретений материальные выгоды в условиях капитализма имела отрицательное значение для всего творчества Теслы. Умей он, как Эдисон, пускать свои изобретения в промышленный оборот и использовать полученные средства для продолжения экспериментов, мир намного раньше получил бы множество того, что лишь сейчас начинает входить в нашу жизнь.

Тесла не оставил после себя научной школы, так как не имел учеников. Его сотрудники хотя и стали под его руководством прекрасными экспериментаторами, но не восприняли ни его идей, ни его способности к изящному и остроумному решению поставленных задач. Целиком полагаясь на свою превосходную память, Тесла не записывал многих своих весьма оригинальных мыслей, подтверждение которых можно ожидать при последующем развитии науки. Эти мысли были лишь намеками высказаны им своим друзьям— Свизи, О’Нейлу и другим, но в незаконченной и неопределенной форме.

Имя Николы Теслы привлекало к себе неподкупной честностью, несгибаемой волей, благородством стремлений.

Блестящие, зажигающие лекции Теслы пробудили у многих мечту о смелых исследованиях. Известный физик Ли де Форест, изобретатель трехэлектродной радиолампы, в письме к Тесле признавался в огромном влиянии, которое тот на него оказал: «Вы больше, чем кто-либо другой, волновали мое юношеское воображение, подстегивали мое самолюбие изобретателя и вообще служили выдающимся примером блистательных достижений в области науки, в которую я хотел войти».

Но не только это воздействие на многих ученых, вдохновенный пример, но и самые научные заслуги Теслы получили всеобщее признание. Они были отмечены как при жизни его, так и после смерти. Мы знаем уже о присуждении ему таких научных наград, как Нобелевская премия и медаль Эдисона. Многие университеты присвоили ему степень доктора наук. Сохранившиеся письма к нему таких выдающихся деятелей физики и электротехники, как В. Крукс, лорд Кельвин, М. Планк, А. Эйнштейн, В. Рентген, Э. Резерфорд, Д. Д. Томсон, Б. Беренд, Ли де Форест и многих других, свидетельствуют о большом научном авторитете Николы Теслы.

Лорд Кельвин писал о нем: «Тесла вложил в.развитие электротехники больше, чем кто-либо другой». Вильяме Крукс, чье имя с трепетом произносил еще юношей Никола Тесла, писал ему: «Вы — настоящий пророк». Резерфорд высоко ценил заслуги Теслы и часто вспоминал о них: «Я прекрасно сознаю, что сделал Тесла в разных областях техники. В своих исследованиях я часто пользовался трансформатором Теслы как средством получения высоких напряжений».

Уже упоминавшийся нами выдающийся американский радиотехник лауреат Нобелевской премии Армстронг писал: «…Я думаю, что миру придется долго ждать появления гения, который мог бы стать соперником Николы Теслы в его свершениях и в его вдохновении».

Характерен также отзыв о значении работ Николы Теслы одного из крупнейших французских электротехников — профессора Блонделя, относящийся к 1936 году:

«Несмотря на эволюцию, которой подвергались средства осуществления передачи энергии многофазными токами и токами высокой частоты, потомство никогда не забудет, что создание этих двух замечательных разновидностей практической электротехники принадлежит, без оговорок, Николе Тесле».

Идеи Николы Теслы не остались бесплодной мечтой. Спустя двадцать пять — тридцать лет они начали осуществляться в самых различных отраслях современной техники. На основе работ Теслы создано множество приборов высокочастотного нагрева, высокочастотного транспорта, телеуправления, резонансного усиления и множества других.

Свидетельством большого научного авторитета Николы Теслы является также занесение его имени на Стене почета Страсбургского физического института, где оно находится в окружении таких имен, как Лаплас, Планк, Бор, Эйнштейн, Резерфорд.

Трижды юбилейные даты — восьмидесяти-, девяносто- и особенно столетие со дня рождения Теслы— отмечались научной общественностью во всем мире.

В июле 1956 года юбилейные торжества в Югославии приняли характер большого международного праздника.

С большим докладом «Работы Николы Теслы и развитие современной физики» выступил известный датский физик Нильс Бор. Он назвал жизнь выдающегося представителя славянских народов Николы Теслы подвигом. Десятки других научных докладов, в числе которых были и доклады советских ученых П. И. Воеводина, А. Е. Алексеева, Ю. Г. Толстова, заслушали участники юбилейного конгресса.

Председатель Международной электротехнической комиссии профессор Даншиг зачитал постановление комиссии, принятое 27 июля 1956 года на заседании в Мюнхене о присвоении единице магнитной индукции в системе МКА названия «Тесла»: «Международная электротехническая комиссия счастлива тем, что чувство глубокого уважения и восхищения трудами Николы Теслы, от основных трудов которого в большой степени зависит работа самой комиссии, отмечено достигнутым общим соглашением о присвоении международной единице магнитной индукции названия «Тесла».

— Присвоение имени Николы Теслы важной и часто употребляемой в электротехнике единице является величайшим выражением международного признания трудов Теслы, подобно тому как в прошлом это признание нашло свое выражение по отношению к таким великанам электротехники, как Ампер, Вольта, Фарадей, Ом, Максвелл, Ватт, Герц и другие, — сказал от имени комиссии профессор Даншиг.

Юбилей Николы Теслы был отмечен и в Америке. В начале апреля 1956 года у Ниагарских водопадов состоялось заседание Международной секции Американского института электроинженеров. Большое число приглашенных электротехников прослушали лекцию об историческом значении системы многофазных токов и, в частности, о создании первой в мире крупной гидроэлектростанции на Ниагаре.

В июне юбилейного года на ежегодном собрании Института электричества имени Эдисона председатель собрания Чарлз Бранч назвал Теслу «Атлантом, все творчество которого оказывает огромное влияние на жизнь современного общества». В октябре того же года в Чикаго прошло ежегодное собрание Американского института электроинженеров, на котором один из известных научных сотрудников лаборатории Вестингауза доктор Самуэль Хибел прочел доклад о работах Николы Теслы. К заседанию была подготовлена выставка его изобретений, на которой особое внимание посетителей привлекла подлинная лодка, плававшая в 1898 году в бассейне Медисон-сквер-гардена.

И, наконец, следует особо отметить очень показательное решение Американского института электроинженеров (постоянным членом, а одно время и вицепрезидентом которого был Тесла) об установлении в качестве высшей награды за заслуги в области электротехники медали Теслы. Известно, что до сих пор такой наградой была медаль Эдисона.

Такова жизнь одного из тех великих людей, чьи имена не предаются забвению человечеством, высоко ценящим всех, кто служит своим гением светлым и радостным целям труда и созидания.


Портрет Николы Теслы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *