Магнитные поля создаются как: СРОЧНО!!!!!! 1. Выберите правильное продолжение фразы: «Магнитные поля создаются…» А) Как

Содержание

Тесты по физике на тему «Магнитное поле» ( 11 класс)


Тесты по теме « Магнитное поле». Физика 11 класс

Вариант 1

1.Выберите наиболее правильное продолжение фразы: «Магнитное поле создается …»:

А. Атомами железа.

Б. Электрическими зарядами.

В. Магнитными зарядами.

Г. Движущимися электрическими зарядами.

2. Чем объясняется взаимодействие двух параллельных проводников с постоянным током?

А. Взаимодействием электрических зарядов.

Б. Действием электрического поля одного проводника с током на ток в другом проводнике.

В. Действием магнитного поля одного проводника с током на ток в другом проводнике.

Г. Действием электрического поля одного проводника на заряды в другом проводнике.

3. Какое из приведенных ниже выражений характеризует силы действия магнитного поля на проводник с током?

А. Bvl sinα. Б. Bqv sin В. BS cosα . Г. LI. Д. Blv sinα. Е. BIv sinα.

4.Укажите единицу измерения магнитного потока:

А. Вебер (Вб). б. Тесла (Тл). В. Генри (Гн.) Г. Кулон (Кл). Д.Фарада (Ф).

5. Укажите правильный вариант изображений линий магнитной индукции проводника с током текущим перпендикулярно плоскости рисунка:

,

1

1 2 3 4

А. 1. Б.2. В.3. Г.4.

6.Куда направлена сила, действующая на проводник с током, внесенный в магнитное поле?

В

А. вверх.

Б. вниз.

В. К наблюдателю.

Г. От наблюдателя.

Д. Вправо.

Е влево.

Ж. Сила равна нулю.

7. Назовите прибор (устройство), в котором используется движение заряженной частицы в магнитном поле по криволинейной траектории:

А. Громкоговоритель.

Б. Амперметр.

в. Масс- спектрограф.

Г. МГД- генератор.

Д. Электромагнит.

8.Чему равна сила, действующая на заряд 10-7 Кл, движущийся со скоростью 600м/с в магнитном поле с индукцией 0.02 Тл, если скорость направлена перпендикулярно линиям магнитной индукции?

А. 3*10-11 Н.

Б. 12 *10-11 Н.

В. 12 *10-7

Н.

Г. 3 *10-7 Н.

Д.С ила равна нулю.

9. Как направлен вектор магнитной индукции в точке 2 около проводника с током?

А. вверх.

Б. вниз.

В. Влево.

Г. Вправо.

Д. К наблюдателю.

Е. От наблюдателя.

10. Как направлена сила, действующая на отрицательный заряд, внесенный в магнитное поле?

В

А. вверх.

Б. вниз.

В. Влево.

Г. Вправо.

Д. К наблюдателю.

Е. От наблюдателя.

Ж. Сила равна нулю

11. Рамка площадью 0.2 м2 расположена в однородном магнитном поле с индукцией 2 Тл. Плоскость рамки расположена перпендикулярно линиям магнитной индукции. Как изменится магнитный поток через эту рамку при повороте плоскости рамки на 90

0?

А. Увеличится на 0.1Вб.

Б. Увеличится на 0.4 Вб.

В. Не изменится.

Г. Уменьшится на 0.4 Вб.

Д. Уменьшится на 0.1 Вб.

12.Как изменится сила, действующая на прямолинейный проводник с током в однородном магнитном поле, при увеличении магнитной индукции в 3 раза и уменьшении силы тока в нем в 3 раза?

А. Увеличится в 9 раз.

Б. Увеличится в 3 раза.

В. Не изменится.

Г. Уменьшится в 3 раза.

Д. Уменьшится в 9 раз.

13. На рисунке пять различных траекторий полета частиц в однородном магнитном поле, линии индукции которого направлены перпендикулярно плоскости рисунка к наблюдателю. Какая траектория принадлежит электрону с наибольшей кинетической энергией?

3

2

1

В 4

5

А. 1. Б.2. В.3. Г.4. Д.5.

14.Как изменится радиус кривизны траектории движения частицы в магнитном поле при уменьшении скорости в 2 раза и увеличении магнитной индукции в 2 раза?

А. Увеличится в 4 раза.

Б. Увеличится в 2 раза.

В. Не изменится.

Г. Уменьшится в 2 раза.

Д. Уменьшится в 4 раза.

Тесты по теме « Магнитное поле». Физика 11 класс.

Вариант 2

1.Подберите наиболее правильное продолжение фразы: «Магнитное поле оказывает силовое действие …»

А. Только на покоящиеся электрические заряды.

Б. Только на движущиеся электрические заряды.

В. Как на движущиеся так и на покоящиеся заряды.

Г. Только на магнитные заряды.

Д. На любые тела обладающие массой.

2.Что наблюдается в опыте Эрстеда?

А. Два проводника взаимодействуют друг с другом.

Б. Проводник с током действует на электрические заряды.

В. Магнитная стрелка поворачивается вблизи заряженного проводника.

Г. Магнитная стрелка поворачивается вблизи проводника с током.

Д. Магнитная стрелка поворачивается вблизи магнита.

3. Какое из приведенных ниже выражений характеризует величину магнитного потока, созданного проводником с током?

А. Bvl sinα. Б. Bqv sin В. BS cosα. Г. LI. Д. Blv sinα. Е. BIv sinα.

4.Укажите единицу измерения магнитной индукции:

А. Вебер (Вб). б. Тесла (Тл). В. Генри (Гн). Г. Кулон (Кл). Д. Фарада (Ф)

5. Укажите правильный вариант изображений линий магнитной индукции проводника с током, текущим перпендикулярно плоскости рисунка:

1

1 2 3 4

А. 1 Б.2 В.3 Г.4

6. Куда направлена сила, действующая на положительно заряженную частицу, движущуюся в магнитном поле?

В

А. вверх.

Б. вниз.

В. К наблюдателю.

Г. От наблюдателя.

Д. Вправо.

Е. Влево.

Ж. Сила равна нулю.

7. Назовите прибор (устройство), в котором используется поворот рамки с током в магнитном поле

А. Громкоговоритель.

Б. Амперметр.

в. Масс- спектрограф.

Г. МГД- генератор.

Д. Электромагнит.

8.Чему равна сила, действующая на проводник с током 2 А в магнитном поле с индукцией 0.04 Тл, если длина активной части проводника 10 см и проводник расположен перпендикулярно линиям магнитной индукции?

А.8Н.

Б.8*10-3Н.

В. 2Н.

Г. 2*10-2 Н.

Д. Сила равна нулю.

9.Как направлен вектор магнитной индукции в точке С около проводника с током?

..,

. С

А. вверх.

Б. вниз .

В. Влево.

Г. Вправо.

Д. К наблюдателю.

Е. От наблюдателя.

Ж. Сила равна нулю.

10. как направлена сила , действующая на проводник с током в магнитном поле

В

А. вверх.

Б. вниз.

В. Влево.

Г. Вправо.

Д. К наблюдателю.

Е. От наблюдателя.

Ж. Сила равна нулю.

11. как изменится магнитный поток в катушке индуктивностью 1 Гн при изменении силы тока в ней от 1 А до 2 А?

А. Увеличится на 1 Вб.

Б. Увеличится на 2 Вб.

В. Не изменится.

Г. Уменьшится на 2 Вб.

Д. Уменьшится на 1 Вб.

12. Как изменится сила, действующая на заряженную частицу, движущуюся в однородном магнитном поле, при увеличении магнитной индукции в 3 раза и увеличении скорости частиц в 3 раза?

А. Увеличится в 9 раз.

Б. Увеличится в 3 раза.

В. Не изменится.

Г. Уменьшится в 3 раза.

Д. Уменьшится в 9 раз.

13. Две заряженные частицы пролетают в магнитное поле. Отношение радиуса кривизны их траектории R1/R1=2. Каково отношение масс частиц m1/m2, если известно, что отношение их зарядов q1/q2=2, а скорости частиц одинаковы?

А. 2. Б. 4. В. 0.5.. С. 0.25.

14.Как изменится радиус кривизны траектории движения частицы в магнитном поле при уменьшении скорости в 2 раза и увеличении магнитной индукции в 2 раза?

А. Увеличится в 4 раза.

Б. Увеличится в 2 раза.

В. Не изменится.

Г. Уменьшится в 2 раза.

Д. Уменьшится в 4 раза.

Ответы:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1Вариант

Г

В

А

А

Б

Г

В

В

Е

Ж

Г

В

Б

Д

2 вариант

Б

Г

Г

Б

Б

В

Б

Б

А

Ж

А

А

Д

Б

Магнитное поле. Источники и свойства. Правила и применение

При подключении к двум параллельным проводникам электрического тока, они будут притягиваться или отталкиваться, в зависимости от направления (полярности) подключенного тока. Это объясняется явлением возникновения материи особого рода вокруг этих проводников. Эта материя называется магнитное поле (МП). Магнитной силой называется сила, с которой проводники действуют друг на друга.

Магнитное поле

Теория магнетизма возникла еще в древности, в античной цивилизации Азии. В Магнезии в горах нашли особую породу, куски которой могли притягиваться между собой. По названию места эту породу назвали «магнетиками». Стержневой магнит содержит два полюса. На полюсах особенно сильно обнаруживаются его магнитные свойства.

Магнит, висящий на нитке, своими полюсами будет показывать стороны горизонта. Его полюса будут повернуты на север и юг. На таком принципе действует устройство компаса. Разноименные полюсы двух магнитов притягиваются, а одноименные отталкиваются.

Ученые обнаружили, что намагниченная стрелка, находящаяся возле проводника, отклоняется при прохождении по нему электрического тока. Это говорит о том, что вокруг него образуется МП.

Магнитное поле оказывает влияние на:
  • Перемещающиеся электрические заряды.
  • Вещества, называемые ферромагнетиками: железо, чугун, их сплавы.

Постоянные магниты – тела, имеющие общий магнитный момент заряженных частиц (электронов).

1 — Южный полюс магнита
2 — Северный полюс магнита
3 — МП на примере металлических опилок
4 — Направление магнитного поля

Силовые линии появляются при приближении постоянного магнита к бумажному листу, на который насыпан слой железных опилок. На рисунке четко видны места полюсов с ориентированными силовыми линиями.

Источники магнитного поля
  • Электрическое поле, меняющееся во времени.
  • Подвижные заряды.
  • Постоянные магниты.

С детства нам знакомы постоянные магниты. Они использовались в качестве игрушек, которые притягивали к себе различные металлические детали. Их прикрепляли к холодильнику, они были встроены в различные игрушки.

Электрические заряды, которые находятся в движении, чаще всего имеют больше магнитной энергии, по сравнению с постоянными магнитами.

Свойства
  • Главным отличительным признаком и свойством магнитного поля является относительность. Если неподвижно оставить заряженное тело в некоторой системе отсчета, а рядом расположить магнитную стрелку, то она укажет на север, и при этом не «почувствует» постороннего поля, кроме поля земли. А если заряженное тело начать двигать возле стрелки, то вокруг тела появится МП. В результате становится ясно, что МП формируется только при передвижении некоторого заряда.
  • Магнитное поле способно воздействовать и влиять на электрический ток. Его можно обнаружить, если проконтролировать движение заряженных электронов. В магнитном поле частицы с зарядом отклонятся, проводники с протекающим током будут перемещаться. Рамка с подключенным питанием тока станет поворачиваться, а намагниченные материалы переместятся на некоторое расстояние. Стрелка компаса чаще всего окрашивается в синий цвет. Она является полоской намагниченной стали. Компас ориентируется всегда на север, так как у Земли есть МП. Вся планета – это как большой магнит со своими полюсами.

Магнитное поле не воспринимается человеческими органами, и может фиксироваться только особыми приборами и датчиками. Оно бывает переменного и постоянного вида. Переменное поле обычно создается специальными индукторами, которые функционируют от переменного тока. Постоянное поле формируется неизменным электрическим полем.

Основные правила
Правило буравчика

Силовая линия изображается в плоскости, которая расположена под углом 900 к пути движения тока таким образом, чтобы в каждой точке сила была направлена по касательной к линии.

Чтобы определить направление магнитных сил, нужно вспомнить правило буравчика с правой резьбой.

Буравчик нужно расположить по одной оси с вектором тока, рукоятку вращать таким образом, чтобы буравчик двигался в сторону его направления. В этом случае ориентация линий определится вращением рукоятки буравчика.

Правило буравчика для кольца

Поступательное перемещение буравчика в проводнике, выполненном в виде кольца, показывает, как ориентирована индукция, вращение совпадает с течением тока.

Силовые линии имеют свое продолжение внутри магнита и не могут быть разомкнутыми.

Магнитное поле разных источников суммируются между собой. При этом они создают общее поле.

Магниты с одинаковыми полюсами отталкиваются, а с разными – притягиваются. Значение силы взаимодействия зависит от удаленности между ними. При приближении полюсов сила возрастает.

Параметры магнитного поля
  • Сцепление потоков (Ψ).
  • Вектор магнитной индукции (В).
  • Магнитный поток (Ф).

Интенсивность магнитного поля вычисляется размером вектора магнитной индукции, которая зависит от силы F, и формируется током I по проводнику, имеющему длину l: В = F / (I * l).

Магнитная индукция измеряется в Тесла (Тл), в честь ученого, изучавшего явления магнетизма и занимавшегося их методами расчета. 1 Тл равна индукции магнитного потока силой 1 Н на длине 1 м прямого проводника, находящегося под углом 900 к направлению поля, при протекающем токе в один ампер:

1 Тл = 1 х Н / (А х м).

Правило левой руки

Правило находит направление вектора магнитной индукции.

Если ладонь левой руки разместить в поле, чтобы линии магнитного поля входили в ладонь из северного полюса под 900, а 4 пальца разместить по течению тока, большой палец покажет направление магнитной силы.

Если проводник находится под другим углом, то сила будет прямо зависеть от тока и проекции проводника на плоскость, находящуюся под прямым углом.

Сила не зависит от вида материала проводника и его сечения. Если проводник отсутствует, а заряды движутся в другой среде, то сила не изменится.

При направлении вектора магнитного поля в одну сторону одной величины, поле называется равномерным. Различные среды влияют на размер вектора индукции.

Магнитный поток

Магнитная индукция, проходящая по некоторой площади S и ограниченная этой площадью, является магнитным потоком.

Если площадь имеет наклон на некоторый угол α к линии индукции, магнитный поток снижается на размер косинуса этого угла. Наибольшая его величина образуется при нахождении площади под прямым углом к магнитной индукции:

Ф = В * S.

Магнитный поток измеряется в такой единице, как «вебер», который равен протеканием индукции величиной 1 Тл по площади в 1 м2.

Потокосцепление

Такое понятие применяется для создания общего значения магнитного потока, который создан от некоторого числа проводников, находящихся между магнитными полюсами.

В случае, когда одинаковый ток I протекает по обмотке с количеством витков n, общий магнитный поток, образованный всеми витками, является потокосцеплением.

Потокосцепление Ψ измеряется в веберах, и равно: Ψ = n * Ф.

Магнитные свойства

Магнитная проницаемость определяет, насколько магнитное поле в определенной среде ниже или выше индукции поля в вакууме. Вещество называют намагниченным, если оно образует свое магнитное поле. При помещении вещества в магнитное поле у него появляется намагниченность.

Ученые определили причину, по которой тела получают магнитные свойства. Согласно гипотезе ученых внутри веществ есть электрические токи микроскопической величины. Электрон обладает своим магнитным моментом, который имеет квантовую природу, движется по некоторой орбите в атомах. Именно такими малыми токами определяются магнитные свойства.

Если токи движутся беспорядочно, то магнитные поля, вызываемые ими, самокомпенсируются. Внешнее поле делает токи упорядоченными, поэтому формируется магнитное поле. Это является намагниченностью вещества.

Различные вещества можно разделить по свойствам взаимодействия с магнитными полями. Их разделяют на группы:
  • Парамагнетики – вещества, имеющие свойства намагничивания в направлении внешнего поля, обладающие низкой возможностью магнетизма. Они имеют положительную напряженность поля. К таким веществам относят хлорное железо, марганец, платину и т. д.
  • Ферримагнетики – вещества с неуравновешенными по направлению и значению магнитными моментами. В них характерно наличие некомпенсированного антиферромагнетизма. Напряженность поля и температура влияет на их магнитную восприимчивость (различные оксиды).
  • Ферромагнетики – вещества с повышенной положительной восприимчивостью, зависящей от напряженности и температуры (кристаллы кобальта, никеля и т. д.).
  • Диамагнетики – обладают свойством намагничивания в противоположном направлении внешнего поля, то есть, отрицательное значение магнитной восприимчивости, не зависящая от напряженности. При отсутствии поля у этого вещества не будет магнитных свойств. К таким веществам относятся: серебро, висмут, азот, цинк, водород и другие вещества.
  • Антиферромагнетики – обладают уравновешенным магнитным моментом, вследствие чего образуется низкая степень намагничивания вещества. У них при нагревании осуществляется фазовый переход вещества, при котором возникают парамагнитные свойства. При снижении температуры ниже определенной границы, такие свойства появляться не будут (хром, марганец).
Рассмотренные магнетики также классифицируются еще по двум категориям:
  • Магнитомягкие материалы. Они обладают низкой коэрцитивной силой. При маломощных магнитных полях они могут войти в насыщение. При процессе перемагничивания у них наблюдаются незначительные потери. Вследствие этого такие материалы используются для производства сердечников электрических устройств, функционирующих на переменном напряжении (асинхронный электродвигатель, генератор, трансформатор).
  • Магнитотвердые материалы. Они обладают повышенной величиной коэрцитивной силы. Чтобы их перемагнитить, потребуется сильное магнитное поле. Такие материалы используются в производстве постоянных магнитов.

Магнитные свойства различных веществ находят свое использование в технических проектах и изобретениях.

Магнитные цепи

Объединение нескольких магнитных веществ называется магнитной цепью. Они являются подобием электрических цепей и определяются аналогичными законами математики.

На базе магнитных цепей действуют электрические приборы, индуктивности, трансформаторы. У функционирующего электромагнита поток протекает по магнитопроводу, изготовленному из ферромагнитного материала и воздуху, который не является ферромагнетиком. Объединение этих компонентов является магнитной цепью. Множество электрических устройств в своей конструкции содержат магнитные цепи.

Похожие темы:

Притягательная планета Интересные сведения о магнитном поле Земли: Наука и техника: Lenta.ru

В последние дни на научных информационных сайтах появилось большое количество новостей, посвященных магнитному полю Земли. Например, новость о том, что в последнее время оно существенно изменяется, или о том, что магнитное поле способствует утечке кислорода из земной атмосферы и даже про то, что вдоль линий магнитного поля ориентируются коровы на пастбищах. Что представляет собой магнитное поле и насколько важны все перечисленные новости?

Магнитное поле Земли – это область вокруг нашей планеты, где действуют магнитные силы. Вопрос о происхождении магнитного поля до сих пор окончательно не решен. Однако большинство исследователей сходятся в том, что наличием магнитного поля Земля хотя бы отчасти обязана своему ядру. Земное ядро состоит из твердой внутренней и жидкой наружной частей. Вращение Земли создает в жидком ядре постоянные течения. Как читатель может помнить из уроков физики, движение электрических зарядов приводит к появлению вокруг них магнитного поля.

Одна из самых распространенных теорий, объясняющих природу поля, — теория динамо-эффекта — предполагает, что конвективные или турбулентные движения проводящей жидкости в ядре способствуют самовозбуждению и поддержанию поля в стационарном состоянии.

Землю можно рассматривать как магнитный диполь. Его южный полюс находится на географическом Северном полюсе, а северный, соответственно, на Южном. На самом деле, географический и магнитный полюса Земли не совпадают не только по «направлению». Ось магнитного поля наклонена по отношению к оси вращения Земли на 11,6 градуса. Из-за того что разница не очень существенная, мы можем пользоваться компасом. Его стрелка точно указывает на южный магнитный полюс Земли и почти точно на Северный географический. Если бы компас был изобретен 720 тысяч лет назад, то он бы указывал и на географический и на магнитный северный полюс. Но об этом чуть ниже.

Магнитное поле защищает жителей Земли и искусственные спутники от губительного воздействия космических частиц. К таким частицам относятся, например, ионизированные (заряженные) частицы солнечного ветра. Магнитное поле изменяет траекторию их движения, направляя частицы вдоль линий поля. Необходимость наличия магнитного поля для существования жизни сужает круг потенциально обитаемых планет (если мы исходим из предположения, что гипотетически возможные формы жизни похожи на земных обитателей).

Ученые не исключают, что часть планет земного типа не имеют металлического ядра и, соответственно, лишены магнитного поля. До сих пор считалось, что планеты, состоящие из твердых скальных пород, как и Земля, содержат три основных слоя: твердую кору, вязкую мантию и твердое или расплавленное железное ядро. В недавней работе ученые из Массачусетского технологического института предложили сразу два возможных механизма образования «скалистых» планет без ядра. Если теоретические выкладки исследователей подтвердятся наблюдениями, то формулу для расчета вероятности встретить во Вселенной гуманоидов или хотя бы что-то, напоминающее иллюстрации из учебника биологии, придется переписать.

Земляне тоже могут лишиться своей магнитной защиты. Правда, точно сказать, когда это произойдет, геофизики пока не могут. Дело в том, что магнитные полюса Земли непостоянны. Периодически они меняются местами. Не так давно исследователи установили, что Земля «помнит» о смене полюсов. Анализ таких «воспоминаний» показал, что за последние 160 миллионов лет магнитные север и юг менялись местами около 100 раз. Последний раз это событие произошло около 720 тысяч лет назад.

Смена полюсов сопровождается изменением конфигурации магнитного поля. Во время «переходного периода» на Землю проникает существенно больше космических частиц, опасных для живых организмов. Одна из гипотез, объясняющих исчезновение динозавров, утверждает, что гигантские рептилии вымерли именно во время очередной смены полюсов.

Кроме «следов» плановых мероприятий по смене полюсов исследователи заметили в магнитном поле Земли опасные подвижки. Анализ данных о его состоянии за несколько лет показал, что в последние месяцы в нем начали происходить опасные изменения. Настолько резких «движений» поля ученые не регистрировали уже очень давно. Вызывающая беспокойства исследователей зона находится в южной части Атлантического океана. «Толщина» магнитного поля в этом районе не превышает трети от «нормальной». Исследователи давно обратили внимание на эту «прореху» в магнитном поле Земли. Собранные за 150 лет данные показывают, что за этот период поле здесь ослабло на десять процентов.

На данный момент трудно сказать, чем это грозит человечеству. Одним из последствий ослабления напряженности поля может стать увеличение (пусть и незначительное) содержания кислорода в земной атмосфере. Связь между магнитным полем Земли и этим газом была установлена с помощью системы спутников Cluster – проекта Европейского космического агентства. Ученые выяснили, что магнитное поле ускоряет ионы кислорода и «выбрасывает» их в космическое пространство.

Несмотря на то, что магнитное поле нельзя увидеть, обитатели Земли хорошо его чувствуют. Перелетные птицы, например, отыскивают дорогу, ориентируясь именно на него. Существует несколько гипотез, объясняющих, как именно они ощущают поле. Одна из последних предполагает, что птицы воспринимают магнитное поле визуально. Особые белки – криптохромы – в глазах перелетных птиц способны менять свое положение под воздействием магнитного поля. Авторы теории считают, что криптохромы могут выполнять роль компаса.

Кроме птиц магнитное поле Земли вместо GPS используют морские черепахи. И, как показал анализ спутниковых фотографий, представленных в рамках проекта Google Earth, коровы. Изучив фотографии 8510 коров в 308 районах мира, ученые заключили, что эти животные предпочтительно ориентируют свои тела с севера на юг (или с юга на север). Причем «реперными точками» для коров служат не географические, а именно магнитные полюса Земли. Механизм восприятия коровами магнитного поля и причины именно такой реакции на него остаются неясными.

Кроме перечисленных замечательных свойств магнитное поле способствует появлению полярных сияний. Они возникают в результате резких изменений поля, происходящих в удаленных регионах поля.

Магнитное поле не обошли своим вниманием сторонники одной из «теорий заговора» – теории о лунной мистификации. Как уже упоминалось выше, магнитное поле защищает нас от космических частиц. «Собранные» частицы скапливаются в определенных частях поля – так называемых радиационных поясах Ван Алена. Скептики, не верящие в реальность высадок на Луну, считают, что во время пролета сквозь радиационные пояса астронавты получили бы смертельную дозу радиации.

Магнитное поле Земли — удивительное следствие законов физики, защитный щит, ориентир и создатель полярных сияний. Если бы не оно, жизнь на Земле, возможно, выглядела бы совсем иначе. В общем, если бы магнитного поля не было — его необходимо было бы придумать.

Приложение 2 / КонсультантПлюс

КонсультантПлюс: примечание.

Приложение на регистрацию в Минюст России не представлялось.

(справочное)

 

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

 

1. Рабочее место — место постоянного или временного пребывания работающего в процессе трудовой деятельности (ГОСТ 12.1.005-88).

2. Персонал (работающие) — лица, профессионально связанные с обслуживанием или работой в условиях воздействия ЭМП.

3. Предельно допустимые уровни (ПДУ) — уровни ЭМП, воздействие которых при работе установленной продолжительности в течение трудового дня не вызывает у работающих заболеваний или отклонений в состоянии здоровья в процессе работы или в отдаленные сроки жизни настоящего и последующего поколения.

4. Геомагнитное поле — постоянное магнитное поле Земли. Гипогеомагнитное поле (ГГМП) — ослабленное геомагнитное поле внутри помещения (экранированные помещения, подземные сооружения).

5. Магнитное поле (МП) — одна из форм электромагнитного поля, создается движущимися электрическим зарядами и спиновыми магнитными моментами атомных носителей магнетизма (электронов, протонов и др.).

6. Электростатическое поле (ЭСП) — электрическое поле неподвижных электрических зарядов (электрогазоочистка, электростатическая сепарация руд и материалов, электроворсование, энергетические установки постоянного тока, изготовление и эксплуатация полупроводниковых приборов и микросхем, обработка полимерных материалов, изготовление изделий из них, эксплуатация вычислительной и множительной техники и др.).

7. Постоянное магнитное поле (ПМП) — поле, генерируемое постоянным током (постоянные магниты, электромагниты, сильноточные системы постоянного тока, реакторы термоядерного синтеза, магнитогидродинамические генераторы, сверхпроводящие магнитные системы и генераторы, производство алюминия, магнитов и магнитных материалов, установки ядерного магнитного резонанса, электронного парамагнитного резонанса, физиотерапевтические аппараты).

8. Электрическое поле (ЭП) — частная форма проявления электромагнитного поля; создается электрическими зарядами или переменным магнитным полем и характеризуется напряженностью.

9. Электромагнитное поле (ЭМП) — особая форма материи. Посредством ЭМП осуществляется взаимодействие между заряженными частицами.

10. Электромагнитное поле промышленной частоты (ЭМП ПЧ) /50 Гц/ (электроустановки переменного тока /линии электропередачи, распределительные устройства, их составные части/, электросварочное оборудование, физиотерапевтические аппараты, высоковольтное электрооборудование промышленного, научного и медицинского назначения).

11. Электромагнитное поле радиочастотного диапазона 10 кГц — 300 ГГц (ЭМП РЧ) (неэкранированные блоки генерирующих установок, антенно-фидерные системы радиолокационных станций, радио- и телерадиостанций, в т.ч. систем подвижной радиосвязи, физиотерапевтические аппараты и пр.).

12. Экранированное помещение (объект) — производственное помещение, конструкция которого приводит к изоляции внутренней электромагнитной среды от внешней (в т.ч. помещение, выполненное по специальному проекту, и подземные сооружения).

13. Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи: предназначена для передачи и распределения электрической энергии.

14. Электроустановка — совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенная для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии.

15. Воздушная линия электропередачи (ВЛ) — устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам и стойкам.

 

 

 

 

Открыть полный текст документа

Магнитное поле земли и здоровье человека

Сейфулла Р.Д. 
М.: ООО «Самполиграфист», 2013. 120 с.

Магнитное поле Земли в первом приближении представляет собой диполь, полюса которого располагаются рядом с полюсами планеты. Магнитное поле – разновидность электромагнитного поля, создаваемого движущимися электрическими зарядами или токами и оказывающая силовое воздействие на движущиеся заряды или токи. Поле определяет магнитосферу, которая отклоняет частицы солнечного ветра. Они накапливаются в радиационных поясах – двух концентрических областях в форме экватора вокруг Земли. Около магнитных поясов эти частицы могут «высыпаться» в атмосферу и приводить к появлению полярных сияний. Нашу планету окружает магнитное поле, которое существует с момента её формирования. Всё, что находится на Земле подвержено действию невидимых силовых линий этого поля. Именно это обстоятельство заинтересовало нас в большей степени, так как структура и функция Земли, а также и человеческого организма тесным образом связана с наличием электрических зарядов, которые определяют все процессы, связанные с жизнедеятельностью всех организмов, находящихся на её поверхности, в воде, в почве, в воздухе. Земля обладает электрическим и магнитным полем. Вся планета имеет отрицательный заряд, а ионосфера положительный. Линии напряженности электрического поля направлены сверху (от ионосферы) вниз (к Земле). Напряженность поля порядка Е = 120 – 130 в/м. Проведя несложные вычисления был сделан вывод, что в электромагнитном поле Земли заключена колоссальная энергия. Проблема получения энергии из магнитного поля Земли весьма актуальна для человечества. Такой приёмник — генератор был сделан ещё в 1889 году Николой Тесла, но правительство США запретило разглашать эту тайну по коммерческим соображениям. В теле человека имеется своё силовое поле, вследствие протекания крови по сосудам. В здоровом теле человека и в нормальных атмосферных условиях имеется полное соответствие и взаимодействие внешнего и внутреннего магнитных полей. Кроме того, существует магнитное поле Солнца, космических галактик и Земли, которые оказывают своё действие на поведение человека и животных (перелётных птиц, рыб, членистоногих, насекомых), которые безошибочно определяют направления движения на тысячи километров.

Оказалось, что изменение магнитного поля Земли является причиной многих заболеваний, которые лечатся другими способами, что требует особого внимания специалистов и лечащих врачей. Так называемые магнитные бури, в которых принимают участие Солнце, солнечный ветер, а также магнитное поле Земли создают много проблем и являются причиной ненормального поведения человека, в том числе и криминального, а также тяжелейших заболеваний: инсультов мозга, инфарктов миокарда, психических расстройств, ДТП и другого криминального и суицидального поведения, о чем пойдёт речь ниже. Японский врач – исследователь Киочи Накагава обратил внимание в середине ХХ века на то, что дефицит магнитного поля Земли является причиной многочисленных заболеваний, которые он объединил общим названием синдром дефицита магнитного поля Земли . Накагава, а также другие ученые поддержали это открытие и предложили проводить коррекцию магнитного поля при его дефиците, при помощи магнитотерапии, что позволило проводить профилактику и лечение многих заболеваний при помощи компенсации недостающего магнитного поля. Это касается, прежде всего, сердечно-сосудистой системы, которая занимает в настоящее время первое место среди других заболеваний. Дело в том, что каждая молекула в магнитном поле вытягивается и поляризуется. Один её конец становится северным магнитным полюсом, а другой — южным. В таком виде каждая молекула легче вступает в электрохимические реакции и в организме идёт правильный обмен веществ. Резкое усиление магнитного поля при магнитной буре или геомагнитной зоне всегда отрицательно сказывается на самочувствии человека. Однако, отсутствие или ослабление магнитного поля является для организма критической ситуацией. Дополнительным фактором риска является электромагнитный смог (создаваемый компьютерными дисплеями, электробытовыми приборами, TV и другими) уменьшают воздействие на наш организм геомагнитного поля Земли. У вернувшихся из космического полёта космонавтов обнаруживали остеопороз, тяжелую депрессию и другие патологические состояния. Важной составляющей для нормализации физиологических функций является восстановление полярности клеток и активизация работы ферментных систем, а также улучшения кровообращения. Автор в течение 33 лет занимается проблемами спортивной фармакологии со спортсменами высшей квалификации, что требует нестандартных, недопинговых подходов (к подготовке спортсменов экстра — класса) особенно восстановления. Поэтому нас заинтересовала, в своё время, проблема дефицита магнитного поля Земли и соответствующие меры её коррекции для того, чтобы повысить работоспособность физически одарённых спортсменов без применения искусственных стимуляторов. Автор не ставил перед собой задачи процитировать всех авторов, которые занимались проблемами магнитного поля Земли, так как их существует многие тысячи как в нашей стране, так и за рубежом, а попытался продемонстрировать основные тенденции этой проблемы, касающихся здоровья человека.

Издание носит научно-популярный характер. В космосе постоянно работают и накапливают необходимый опыт для межпланетных полётов коллективы отечественных и зарубежных ученых исследователей для перспективы создания постоянно действующих обитаемых станций с человеком и разработки полезных ископаемых.
 



Часть I.
Природа магнитного поля Земли и влияние его на человека

Глава 1. Вселенная и строение солнечной системы
Глава 2. Солнечная система во вселенной
Глава 3. Напряженность магнитного поля Земли
Глава 4. Позитивные свойства магнитного поля Земли
Глава 5. Роль магнитного поля в жизнедеятельности человека
Глава 6. Атмосфера Земли
Глава 7. Влияние магнитных бурь на организм человека

Часть II.
Электрические и магнитные свойства при передаче нервного импульса

Глава 8. Поляризация мембраны живой клетке
Глава 9. Живые ткани как источник энергетических потенциалов
Глава 10. Синдром дефицита магнитного поля Земли
Глава 11. Коррекция магнитного поля спортсменов при помощи магнитотерапии
Глава 12. Естественный баланс дефицита магнитного поля Земли
Глава 13. Влияние магнитного поля Земли на космонавтов
Глава 14. Биоэлектрические явления (при эпилепсии) в процессах передачи информации в организме
Глава 15. Патофизиологические причины эпилепсии
Глава 16. Межнейронные связи при передаче информации в организме 
Глава 17. Необходимые условия для нормальной работы ЦНС
Глава 18. Профилактическое действие магнитотерапии при дефиците магнитного поля
Глава 19. О пользе магнитов при дефиците магнитного поля Земли
Глава 20. Перспективы развития цивилизаций


Устройство и классификация МР-томографов


Устройство МР-томографа

Любой МР-томографа состоит из:

  • магнита, создающего постоянное магнитное поле, в которое помещают пациента;
  • градиентных катушек, создающих слабое переменное магнитное поле в центральной части основного магнита. Это поле называют градиентным. Оно позволяет выбрать область исследования части тела пациента;
  • передающих и принимающих радиочастотных катушек; передающие, используются для создания возбуждения в теле пациента, приемные — для регистрации ответа возбужденных участков;
  • компьютера, управляющего работой катушек, регистрирацией, обработкой измеренных сигналов, реконструкцией МР-изображений.


Радиочастотные катушки для различных отделов тела необходимы для получения качественного изображения.

Магнитное поле характеризуется индукцией магнитного поля, единицей измерения является Тл (тесла) по имени сербского учёного Николы Теслы.

Различают несколько типов томографов (зависит от величины постоянного магнитного поля):

  • 0,01 Тл — 0,1 Тл → со сверхслабым полем;
  • 0,1 — 0,5 Тл → со слабым полем;
  • 0,5 — 1.0 Тл → со средним полем;
  • 1.0 — 2,0 Тл → с сильным полем;
  • >2,0 Тл → со сверхсильным полем.

Существует три вида магнитов для мр-томографа: резистивные, постоянные и сверхпроводящие.

Томографы с полем до 0,3 Тл чаще всего имеют резистивные или постоянные магниты, выше 3,0 Тл — сверхпроводящие.

Оптимальная напряженность магнитного поля является постоянным предметом дискуссий среди специалистов.

Более 90% магнитно-резонансных томографов составляют модели со сверхпроводящими магнитами (0,5 — 1,5 Тл). Томографы со сверхсильным полем (выше 3,0 Тл) очень дороги в эксплуатации. Постоянные магниты напротив, дёшевы и просты в эксплуатации.


Открытый и закрытый тип МР-томографа.

Резистивные магниты

Магнитное поле создается с помощью электрического тока, который проходит через катушку. МР-томографы с резистивными магнитами требуют большого количества электроэнергии, которая сильно нагревает магнит, что необходимо для получения сильных магнитных полей. Такая система вырабатывает поле с напряженностью до 0,3 Тесла.

Резистивные магниты были первыми применены в клинической практике. Они просты в изготовлении, стоят дешевле сверхпроводящих или постоянных. При этом они требуют мощного и стабильного источника питания, системы водоохлаждения с качественной очисткой воды. Уровень магнитного поля в них ограничен величиной 0.3Т, при котором отношение сигнал/шум еще не достаточно высоко. По качеству и времени сканирования они уступают томографам с более сильными полями. В настоящее время этот тип магнита практически не используется, и весь современный парк томографов состоит из приборов с постоянными и сверхпроводящими магнитами.

Постоянные магниты

Магнитное поле этого типа не требует высоких эксплуатационных расходов на электроэнергию и криогенные материалы. Главным недостатком постоянных магнитов являет то, что они генерируют слабое поле с напряженностью до 0,3 Тесла. Кроме того, такие томографы обладают большой массой, так же у них отсутствует функция аварийного снижения магнитного поля. Часто томографы с постоянными магнитами имеют «открытый» тип конструкции, постоянными магнитами обычно комплектуются небольшие приборы для специализированных исследований отдельных частей тела, например, суставов конечностей.

Сверхпроводящие магниты

В таких магнитах используется свойство сверхпроводимости, которое присуще некоторым материалам при очень низких температурах, близких к абсолютному нулю. Сверхпроводящий материал не требует энергетических затрат, потому что практически не имеет электрического сопротивления. Однако для создания температуры, близкой к абсолютному нулю, необходимы криогенные материалы (жидкий гелий). Сверхпроводящие магниты создают магнитные поля высокой напряженности 1,0-3,0 Тесла и более. Они являются наиболее дорогими, но, благодаря высокому уровню поля и наилучшему соотношению сигнал/шум, обеспечивают наилучшее качество изображения. Не случайно наибольший прогресс в совершенствовании магнитных томографов наблюдается в области сверхпроводящих магнитов. Сегодня они покрывают более 80% рынка МР-томографов. Относительно низкий расход жидкого гелия у современных моделей, высокая скорость исследования и качество изображения делают их максимально привлекательными для потребителя.

В настоящее время изготавливаются магнитно-резонансные томографы двух типов: закрытого и открытого типа. Открытый тип томографа удобен для проведения различных манипуляций, поскольку обеспечивает более свободный доступ к пациенту. Преимуществом таких томографов является отсутствие замкнутого пространства, что актуально для пациентов страдающих клаустрофобией. Нужно учитывать, что при всех удобствах, отрытую конструкцию чаще имеют аппараты с низкой и средней напряжённостью магнитного поля, а большая часть томографов с мощными полями и наилучшим качеством изображения имеют туннельный тип.

Принципы работы МРТ. Центр МРТ Верум в Ижевске

МРТ является одной из наиболее часто используемых технологий обработки изображений, хотя это относительно новая технология. Первая статья об этой технологии опубликована в 1973 году. Через год после этого первое изображение поперечного сечения живой мыши. Технология была впервые использована на человеческом теле в 1977 году, а с другой стороны, первое рентгеновское изображение человека было получено в 1895 году.

Возникновение технологии МРТ обусловлено большим развитием ядерного магнитного резонанса. Вот почему в первые годы эта технология называлась ядерной магнитно-резонансной томографией (ЯМРТ). Тем не менее, одна важная вещь о МРТ, о которой следует упомянуть, заключается в том, что эта технология не так опасна, как ее звук.

Физические принципы МРТ

Известно, что более 70% человеческого тела образованы молекулами воды, каждая из которых содержит два ядра водорода или протоны. Это означает, что почти в каждом человеческом органе и тканях содержится большое количество молекул воды. Между тем, ученые выяснили, что магнитные моменты некоторых протонов в молекулах воды совпадают с направлением поля, когда он был помещен в сильное магнитное поле. Это привело к тому, что это явление можно использовать для разработки новой передовой медицинской технологии обработки изображений, поэтому была изобретена МРТ. Конечно, чтобы получить изображение человеческого тела, следует использовать другие устройства и технологии.

Прежде всего, необходимо создать очень мощное магнитное поле. Чтобы создать это сильное магнитное поле, нам нужен радиочастотный передатчик. Функция этого устройства заключается в создании электромагнитного поля. Когда большое количество электронов, протекающих по металлическому кольцу вокруг устройства МРТ, генерируется сильное магнитное поле. Проще говоря, фотоны этого поля имеют только правую энергию, известную как резонансная частота, для переворота спина выровненных протонов. Чем более мощная и продолжительная продолжительность поля, тем больше будут задействованы совпадающие спины. Протон начнет распадаться в исходное состояние спин-вниз, и во время этой процедуры фотоны будут выпущены. Именно эта связь между напряженностью поля и частотой позволяет использовать ядерный магнитный резонанс для визуализации. Для различных частей тела человека может быть применено дополнительное магнитное поле, обеспечивающее простой способ контроля, где протоны активируются радиофотонами. Следует упомянуть, что когда градиентные катушки создают мощное магнитное поле, во время работы будут большие шумы. Поэтому необходимо предпринять некоторые усилия для уменьшения этого шума, в противном случае он может достичь приблизительно 130 децибел (порог человеческой боли), что будет очень вредно для человеческого организма

Принцип, по которому можно построить изображения, состоит в том, что различные органы или ткани внутри человеческого тела имеют разное количество молекул воды, поэтому различные положения человеческого тела возвращаются в равновесное состояние с разной скоростью. Используя компьютер для расчета, можно получить изображения органов и тканей. Иногда для визуализации МРТ можно использовать метод инъекции, который называется контрастными агентами. Контрастные агенты можно вводить внутривенно или непосредственно в сустав. Первый метод может помочь улучшить появление кровеносных сосудов, опухолей или воспаления. Второй способ сродни артрографии. МРТ широко используется для получения изображений большинства частей человеческого тела.

Применение МРТ

В медицинской области, МРТ-технология используется для обнаружения тканей, которые имеют патологические проявления, например опухоли. Используя эту технологию, нормальные ткани и патологические ткани можно легко отличить, потому что МРТ имеет лучшее контрастное разрешение (способность различать между двумя произвольно подобными, но не идентичными тканями), чем КТ. Еще одна важная причина, по которой используется МРТ, заключается в том, что, не как компьютерная томография и традиционный рентгеновский снимок, МРТ использует сильные магнитные поля и неионизирующее излучение, и нет убедительных доказательств того, что эта технология может принести любой ущерб здоровью человека.

У МРТ есть особое преимущество, что он может определять внутреннее строение человеческого тела без каких-либо разрезов. Хотя технология МРТ несколько дороже для обычной клиники для ежедневной работы, но процедура МРТ очень эффективна, что делает ее привлекательной.

Технология МРТ особенно полезна при следующих процессах в организме:

  • воспаление или инфекция в органе;
  • дегенеративные заболевания;
  • инсульты;
  • мышечно-скелетные расстройства;
  • опухоли;
  • другие нарушения, которые существуют в тканях или органах в их теле.

Магнитно-резонансная томография в настоящее время получила широкое распространение в медицине, как наиболее информативный и не инвазивный метод диагностики патологии различных органов и систем. Томограф представляет собой большой магнит, по силе которого сканеры разделяются на низкопольные (до 0.5Тл), среднепольные (от 0.5Тл до 1.0Тл), высокопольные (от 1.0 до 3.0Тл) и сверхвысокопольные (более 3.0Тл). Наибольшее распространение в клинической практике получили 1.5Тл томографы, в большинстве случаев позволяющие получить исчерпывающую информацию о структуре тканей и органов. В основе МР-томографии лежит ряд основных принципов.

Для получения изображения, в ходе исследования в теле человека создается временное магнитное поле, направление которого изменяется из-за воздействия радиочастотных сигналов, что сопровождается выделением энергии, которая считывается томографом и конвертируется в изображение. Этот процесс не несет лучевой нагрузки, по этой причине количество МР-исследований в течение жизни человека не ограничено.

Процесс получения изображений при МР-томографии более длительный по сравнению с другими исследованиями (УЗ-диагностика, рентген и КТ), в среднем сканирование одной области составляет около 30 минут, на протяжении которого пациент должен лежать неподвижно. Высокопольные МР-системы (1.5Тл) обладают сравнительно быстрой способностью получения и обработки изображения.

Дискомфорт во время исследования могут принести громкие звуковые сигналы, образующиеся в ходе работы томографа, что являются особенностью метода (для комфортного прохождения процедуры и защиты органов слуха используются защитные наушники). При длительном сканировании радиочастотное излучение может вызвать у пациента чувство жара, для предотвращения чрезмерного нагрева тканей в современных томографах установлена защита, ограничивающая силу радиочастотного импульса, в соответствии с международными стандартами безопасности.

МР-томографы подразделяются на «открытый» и «закрытый» типы. Для первого вида характерно отсутствие замкнутой апертуры, что играет важную роль для пациентов с клаустрофобией, но такие томографы обладают низкой силой магнитного поля, а, следовательно, и разрешением, кроме того исследования выполняются более длительное время. Абсолютное большинство томографов в клинической практике закрытого типа, в которых пациент почти полностью находится в закрытой апертуре, что позволяет добиться высокой разрешающей способности и скорости сканирования, но не всегда подходят для пациентов с клаустрофобией.

Как создаются магнитные поля — Видео и стенограмма урока

Токопроводящие проводники

Эксперимент XIX века показал, что провод, по которому проходит электрический ток, является магнитом. Поскольку все электроны движутся по проводу в одном направлении, вокруг провода создается четко определенное магнитное поле. Сила магнитного поля пропорциональна величине тока, протекающего по проводу. Другими словами, увеличение тока увеличивает силу магнитного поля.Итак, если провода такие магнитные, почему мы не видим, как скрепки и вилки летают по комнате и прилипают к ним? Причина в том, что магнитное поле не очень сильно при нормальном, повседневном уровне электрического тока. Нам нужно будет немного поработать, чтобы превратить проволоку в полезный магнит.

Электромагниты

Поместив ферромагнитные материалы в электрическую катушку, вы можете усилить электромагнит.

Электромагнит — это магнит, который использует электрический ток для создания своего магнитного поля.Это отличается от постоянных магнитов, таких как те, что есть в вашем холодильнике, которые полагаются на магнитные свойства атомов в материале для создания магнитного поля. На данный момент наш электромагнит представляет собой просто провод, но магнитное поле слишком слабое, чтобы сделать что-либо практичное. Однако, если мы согнем провод вокруг и вокруг, чтобы сформировать катушку, магнитные поля петель будут концентрироваться в центре. Чтобы еще больше усилить этот эффект, мы можем намотать несколько слоев проволоки друг на друга. Использование большего количества витков провода увеличивает силу магнитного поля.Это явное улучшение по сравнению с нашим одиночным проводом, которое использовалось ранее, но оно все еще недостаточно прочное, чтобы быть действительно практичным.

Мы можем сделать наш электромагнит в несколько тысяч раз сильнее, поместив сердечник из ферромагнитного материала, такого как железо, в центр катушки. Ферромагнитные материалы содержат так называемые магнитные домены, которые представляют собой области в материале, которые действуют как крошечные магниты. Обычно домены имеют произвольную конфигурацию, и материал не проявляет никакого магнетизма.Однако при воздействии магнитного поля, такого как создаваемое нашей катушкой с проволокой, домены начинают выравниваться, и отдельные магнитные поля объединяются в большее поле.

Степень выравнивания домена зависит от силы магнитного поля, создаваемого катушкой, которое, как мы узнали ранее, может контролироваться величиной тока, протекающего через провод. Не менее важно то, что при отключении тока магнитные домены возвращаются к своей случайной конфигурации, и электромагнит теряет почти весь свой магнетизм.Возможность управлять очень мощным магнитом с помощью переключателя имеет множество практических применений.

Электромагниты в действии

Мы используем электромагниты каждый день, даже не осознавая этого. Их буквально можно найти на тысячах различных устройств, потому что они очень полезны. Например, их можно использовать для подъема стали на свалке металлолома, для звонка в школьный звонок на перемену и даже для левитации высокоскоростных поездов. Знаете ли вы, что в динамиках используются электромагниты? Выступающие пользуются преимуществом того факта, что силой электромагнита можно управлять, регулируя электрический ток.

Источник звука посылает ток на электромагнит в динамике, который управляет звуком, который мы слышим.

Динамик имеет постоянный магнит, установленный на раме, и небольшой электромагнит, прикрепленный к гибкому конусу. Источник звука, например радио, посылает переменный ток на электромагнит, который изменяет то, насколько сильно электромагнит реагирует на магнитное поле постоянного магнита. Это контролирует движение конуса, который производит амплитуду и частоту звука, который мы слышим.Как видите, электромагниты дают нам возможность преобразовывать электрический ток в полезную механическую силу, которую можно использовать во всех сферах применения.

Краткое содержание урока

Все магнитные поля создаются движущимися заряженными частицами. Стационарные заряженные частицы не создают магнитных полей. Электромагнит — это магнит, который использует электрический ток для создания магнитного поля. Простейший электромагнит — это просто провод, по которому проходит ток, который создает магнитное поле вокруг провода.Если обернуть провод в катушку, магнитное поле в центре катушки становится сильнее. Добавление ферромагнитного сердечника в центр катушки резко увеличивает напряженность магнитного поля.

Ферромагнитные материалы содержат магнитные домены произвольной формы, которые выравниваются под действием магнитного поля. Выравнивание этих доменов объединяет их индивидуальные магнитные поля в одно сильное поле. Изменение тока в проводе приводит к различной степени выравнивания и, следовательно, к общей силе электромагнита.Возможность электрического управления магнетизмом электромагнита привела к множеству практических применений.

Результаты обучения

После просмотра этого урока вы сможете делать следующее:

  • Объяснять, как создаются магнитные поля с помощью электричества
  • Определить электромагнит
  • Опишите, как добавление ферромагнитного материала к проводу увеличивает напряженность магнитного поля.
  • Приведите примеры повседневного применения электромагнитов

Что создает магнитное поле Земли?

Путешествие, чтобы увидеть северное или южное сияние, вошло в список желаний почти каждого.Но неизвестно большинству, эти прекрасные проявления света вызваны опасными космическими лучами, которые были отклонены магнитным полем нашей Земли.

Магнитные поля вокруг планет ведут себя так же, как стержневой магнит. Но при высоких температурах металлы теряют свои магнитные свойства. Итак, ясно, что горячее железное ядро ​​Земли не является тем, что создает магнитное поле вокруг нашей планеты.

Напротив, магнитное поле Земли вызвано динамо-эффектом.

Эффект работает так же, как динамо-светильник на велосипеде.Магниты в динамо-машине начинают вращаться при нажатии на педали велосипеда, создавая электрический ток. Затем электричество используется для включения света.

Этот процесс также работает в обратном порядке. Если у вас есть вращающийся электрический ток, он создаст магнитное поле.

На Земле течение жидкого металла во внешнем ядре планеты генерирует электрические токи. Вращение Земли вокруг своей оси заставляет эти электрические токи образовывать магнитное поле, которое распространяется вокруг планеты.

Магнитное поле чрезвычайно важно для поддержания жизни на Земле. Без этого мы были бы подвержены воздействию большого количества солнечной радиации, и наша атмосфера могла бы свободно просачиваться в космос.

Это, вероятно, то, что случилось с атмосферой на Марсе. Поскольку в ядре Марса нет текущего жидкого металла, он не производит такого же динамо-эффекта. Это оставило планету с очень слабым магнитным полем, из-за чего ее атмосфера была унесена солнечными ветрами, что сделало ее непригодной для жизни.

Магнитное поле Земли, подобное магнитному полю стержневого магнита, наклоненного на 11 градусов от оси вращения Земли. Предоставлено: Dea / D’Arco Editor / Getty Images

.

Королевский институт Австралии имеет образовательный ресурс, основанный на этой статье. Вы можете получить к нему доступ здесь.

Вишну Варма Р. Веджаян

Вишну Варма Р. Веджаян — студент-физик из Лондонского университета королевы Марии, интересующийся научными работами и исследованиями в области физики.Стажировался в Cosmos в начале 2017 года.

Читайте научные факты, а не беллетристику …

Никогда еще не было более важного времени для объяснения фактов, сохранения знаний, основанных на фактах, и для демонстрации последних научных, технологических и инженерных достижений. «Космос» издается Королевским институтом Австралии, благотворительной организацией, призванной связывать людей с миром науки. Финансовые взносы, какими бы большими они ни были, помогают нам предоставлять доступ к достоверной научной информации в то время, когда она больше всего нужна миру.Пожалуйста, поддержите нас, сделав пожертвование или купив подписку сегодня.

Сравнение электрического поля и магнитного поля — разница и сравнение

Область вокруг магнита, в которой действует магнитная сила, называется магнитным полем. Он производится движущимися электрическими зарядами. Наличие и сила магнитного поля обозначается «линиями магнитного потока». Направление магнитного поля также указано этими линиями.Чем ближе линии, тем сильнее магнитное поле, и наоборот. Когда частицы железа помещаются над магнитом, хорошо видны силовые линии. Магнитные поля также генерируют энергию в частицах, которые с ними соприкасаются. Электрические поля генерируются вокруг частиц, несущих электрический заряд. Положительные заряды притягиваются к нему, а отрицательные — отталкиваются.

Движущийся заряд всегда имеет как магнитное, так и электрическое поле, и именно по этой причине они связаны друг с другом.Это два разных поля с почти одинаковыми характеристиками. Следовательно, они взаимосвязаны в поле, называемом электромагнитным полем. В этом поле электрическое поле и магнитное поле движутся под прямым углом друг к другу. Однако они не зависят друг от друга. Они также могут существовать независимо. Без электрического поля магнитное поле существует в постоянных магнитах, а электрические поля существуют в форме статического электричества в отсутствие магнитного поля.

Таблица сравнения

Сравнительная таблица электрического поля и магнитного поля
Электрическое поле Магнитное поле
Природа Создано вокруг электрического заряда Создано вокруг движущегося электрического заряда и магнитов
Единицы Ньютон на кулон, вольт на метр Гаусс или Тесла
Сила Пропорциональна электрическому заряду Пропорционально заряду и скорости электрического заряда
Движение в электромагнитном поле Перпендикулярно магнитному полю Перпендикулярно электрическому полю
Электромагнитное поле Генерирует VARS (емкостное) Поглощает VARS (индуктивно)
Полюс Монополь или диполь Диполь

Что такое электрические и магнитные поля?

На веб-сайте Puget Sound Energy (PSE) приведены объяснения электрических и магнитных полей, их свойств и способов их создания:

Магнитные поля создаются всякий раз, когда есть электрический ток.Это также можно представить как поток воды в садовом шланге. По мере увеличения протекающего тока уровень магнитного поля увеличивается. Магнитные поля измеряются в миллигауссах (мГс).
Электрическое поле возникает везде, где присутствует напряжение. Электрические поля создаются вокруг приборов и проводов везде, где есть напряжение. Вы можете представить себе электрическое напряжение как давление воды в садовом шланге — чем выше напряжение, тем сильнее напряженность электрического поля.Напряженность электрического поля измеряется в вольтах на метр (В / м). Сила электрического поля быстро уменьшается по мере удаления от источника. Электрические поля также могут быть экранированы многими объектами, такими как деревья или стены здания.

Природа

Электрическое поле — это, по сути, силовое поле, которое создается вокруг электрически заряженной частицы. Магнитное поле создается вокруг постоянного магнитного вещества или движущегося электрически заряженного объекта.

Обращения

В электромагнитном поле направления движения электрического и магнитного полей перпендикулярны друг другу.

шт.

Единицы измерения напряженности электрического и магнитного поля также различаются. Сила магнитного поля представлена ​​либо гауссом, либо тесла. Напряженность электрического поля выражается в Ньютонах на кулон или в вольтах на метр.

Force

Электрическое поле на самом деле представляет собой силу на единицу заряда, испытываемую неподвижным точечным зарядом в любом заданном месте внутри поля, тогда как магнитное поле обнаруживается силой, которую оно оказывает на другие магнитные частицы и движущиеся электрические заряды.

Однако обе концепции прекрасно взаимосвязаны и сыграли важную роль во множестве новаторских инноваций. Их взаимосвязь может быть четко объяснена с помощью уравнений Максвелла, набора дифференциальных уравнений в частных производных, которые связывают электрические и магнитные поля с их источниками, плотностью тока и плотности заряда.

Список литературы

Поделитесь этим сравнением:

Если вы дочитали до этого места, подписывайтесь на нас:

«Электрическое поле против магнитного поля». Diffen.com. Diffen LLC, н.д. Интернет. 17 сен 2021. <>

Можно ли создавать магнитные волны?

Категория: Физика Опубликовано: 13 января 2016 г.

Public Domain Image, источник: Кристофер С.Бэрд

Да, с помощью магнитов можно создавать электромагнитные волны. Нет, невозможно создать магнитные волны без электрического поля. Электрические поля создаются электрическими зарядами. Например, если вы статически зарядили воздушный шар, потерев его о волосы, воздушный шар создаст электрическое поле. Магнитные поля создаются магнитами. Например, магнит на холодильник создает магнитное поле и прилипает к нему. Электрические поля и магнитные поля не являются отдельными сущностями.На самом деле они являются гранями одной единой сущности: электромагнитного поля.

Хотя электрические заряды могут создавать электрические поля, магнитные поля могут также создавать электрические поля. Точно так же, хотя магниты могут создавать магнитные поля, электрические поля также могут создавать магнитные поля. Фактически, каждый раз, когда вы меняете магнитное поле, вы создаете электрическое поле. Это называется законом индукции Фарадея. Точно так же каждый раз, когда вы меняете электрическое поле, вы создаете магнитное поле.Это называется законом Максвелла-Ампера. Интересно то, что изменяющееся электрическое поле создает изменяющееся магнитное поле, которое создает изменяющееся электрическое поле, которое создает изменяющееся магнитное поле и так далее. Вместо того, чтобы рассматривать электрическое поле и магнитное поле как отдельные сущности, которые постоянно создают друг друга в процессе циклической обратной связи, правильнее рассматривать их просто как один единый объект: электромагнитное поле. Из-за этого циклического процесса обратной связи электромагнитные поля, которые меняются во времени, становятся самоподдерживающимися и распространяются в космос, даже если электрические заряды или магниты, запустившие процесс, исчезают.Мы называем такие самоподдерживающиеся вариации электромагнитного поля «электромагнитными волнами» или «электромагнитным излучением». Знакомый пример электромагнитных волн — видимый свет. Все электромагнитные волны распространяются со скоростью света, потому что все они в действительности являются светом того или иного вида.

Итак, невозможно создать чисто магнитные волны. Сам акт создания волн в магнитном поле автоматически создает соответствующие электрические поля и приводит к электромагнитному излучению.Например, если вы возьмете стержневой магнит и встряхнете им над головой, вы не создадите магнитные волны. Вы создаете электромагнитных волн . В частности, вы создаете очень слабые, очень низкочастотные радиоволны. Это не фигура речи. Вращение стержневого магнита буквально создает радиоволны, распространяющиеся во всех направлениях. Однако эти радиоволны очень низкочастотные, поэтому не думайте, что вы можете начать транслировать музыку нового поколения на свой радиоприемник, размахивая стержневым магнитом.

Темы: электрическое поле, электромагнетизм, магнит, магнитное поле

Что такое магнитное поле?

Что такое магнитное поле?

Эксперименты с магнитами и нашими окрестности


Что такое магнитное поле?

Магнит создает векторное поле, магнитное поле во всех точках вокруг него. Его можно определить как измерение силы, которую поле оказывает на движущуюся заряженную частицу, такую ​​как электрон.Сила (F) равна заряду (q), умноженному на скорость частица, умноженная на величину поля (B), или F = q * v x B, где направление F находится под прямым углом к ​​v и B в результате пересечения продукт. Это определяет силу и направление магнитного поля в любом точка.

Что создает магнитное поле?

Магнитное поле можно создать движущимся заряды, например токоведущий провод. Магнитное поле также может быть создаваемый спиновым магнитным дипольным моментом и орбитальным магнитным диполем момент электрона в атоме.

Какая связь между ток и магнитные поля?

Это Правило правой руки для магнитных поле от протекающего тока и магнитное поле в катушке.

Когда в проводе течет ток, возникает магнитное поле. создается вокруг проволоки. Чтобы визуализировать это, возьмите правую руку, согните пальцы и высуньте большой палец наружу. Теперь покажите пальцем направление тока, протекающего в проводе (при использовании обычного тока где ток течет от + конца батареи к минусу аккумулятор.ПРИМЕЧАНИЕ: электроны текут от минусового конца батареи к плюсовому полюсу. конец, и называется электронным током вместо обычного тока). В направление, в котором ваши пальцы изогнуты вокруг проволоки, — это направление магнитное поле вокруг провода. Например, если бы ток приближался прямо с этой страницы к вам, ваш большой палец будет указывать на вас и ваши пальцы укажут направление против часовой стрелки к магнитному поле вокруг провода.

Показывает магнитное поле вокруг провода, по которому течет ток.

Показывает силу магнитного поля вокруг провода. это тем сильнее, чем ближе вы к проводу. Х внутри провода означает что ток течет в провод, прочь от вас.

Здесь показано поле вокруг двух рядом расположенных проводов, несущих ток в том же направлении. Провода притягиваются друг к другу, и сблизятся.

Показывает напряженность магнитного поля вокруг двух проводов. Текущий течет в оба провода. Обратите внимание, как магнитное поле немного сильнее на стороне провода от другого провода? Это показывает что магнитное поле вокруг провода влияет на то, как ток течет в соседние провода.

Здесь показано поле вокруг двух рядом расположенных проводов, несущих ток в противоположных направлениях.Провода отталкиваются друг от друга, и раздвинутся дальше друг от друга.

Показывает напряженность магнитного поля вокруг двух проводов. Текущий втекает в проволоку справа и выходит из проволоки слева. Обратите внимание, как магнитное поле немного сильнее на стороне провода. лицом к другому проводу? Это показывает, что магнитное поле вокруг Wire влияет на то, как ток течет в соседних проводах.

Если у вас есть катушка с проволокой, просто изогните ее. пальцами правой руки вокруг катушки в том же направлении, что и ток течет.Ваш большой палец будет указывать на северный магнитный полюс, который катушка проволоки создаст.

Условно мы утверждаем, что магнитное поле имеет связанное с ним направление, так что поле выходит за северный конец магнит, проходит через воздух или другие материалы поблизости и снова попадает на юг конец магнита. Внутри магнита поле течет с юга назад. к северу.

Таким образом, ток течет от + к — батареи, и магнитные поля текут с севера на юг от магнита.

Что мы знаем о силовых линиях магнитного поля?

Силовые линии магнитного поля — это способ визуализировать магнитное поле. поле. Когда они нарисованы, расстояние между ними является показателем напряженность поля. Чем они ближе, тем сильнее поле. Для Например, количество линий на квадратный сантиметр является мерой прочности магнитного поля. В частности, 1 Гаусс эквивалентен 1 силовой линии магнитного поля в пределах 1 квадрата. сантиметр.Также направление касательной к силовая линия — это направление магнитного поля в этой точке и направление, которое укажет компас ..

Из чего сделаны магнитные поля?

В области физика элементарных частиц — изучение основных строительных блоков всех что мы знаем. Раньше мы думали, что электроны, протоны, нейтроны и фотоны были все, что было.Однако затем мы обнаружили множество другие частицы, из которых состоят протоны и нейтроны. Сегодня, мы знаем о 12 частицах, 4 электрослабых силах и 1 сильной силе. Они являются:

Фермионы (носители вещества) Бозоны (носители силы)
Лептоны Кварки Унифицированная электрослабая Сильный
электронное нейтрино вверх фотон глюон
электрон вниз Вт-
мюонное нейтрино шарм Вт +
мюон странно Zo
тау нейтрино верх
тау низ

Итак, как один магнит ощущает присутствие еще один магнит, когда они подходят друг к другу? Я не думаю, что физики действительно знаю ответ на этот вопрос.Они знают, что электромагнитное поле на самом деле состоит из огромного количества фотонов, но виртуальные безмассовые фотоны составляют магнитное поле, и как одно поле влияет на другие магнитные поля на расстоянии, и движется ли магнитное поле со скоростью света, как гравитационные волны? Возможно, вы откроете для себя некоторые из этих ответы.

Две отличные книги о том, как мы электронов, протонов, нейтронов и фотонов ко всему вышеперечисленному:
«Взаимодействие», Шелдон Глэшоу, Warner Books, 1988, ISBN 0-446-38946-3
«Элегантная Вселенная», Брайан Грин, Винтаж Книги, 1999, ISBN 0-375-70811-1


Что такое магнитное поле?

Что такое магнитное поле? Как мы можем измерить его и увидеть его силы?

«Магнитное поле — это область вокруг магнита, магнитного объекта или электрического заряда, в которой действует магнитная сила.”

А?

Скажем так. Невидимая область вокруг магнитного объекта, которая может притягивать к себе другой магнитный объект или отталкивать другой магнитный объект от него, называется магнитным полем . Это что-то вроде тех невидимых «силовых полей», которые окружают объект невидимой силой в научно-фантастических фильмах и книгах.

Звучит как волшебство, правда? Итак, как это работает? Ниже приведены пять вопросов (и ответов!), Которые вы всегда хотели задать о магнитных полях:

  1. Что делает магнитное поле?

Магнитные поля создаются движущимся электрическим зарядом.Когда электроны с отрицательным зарядом движутся определенным образом, может создаваться магнитное поле. Эти поля могут создаваться внутри атомов магнитных объектов или внутри проводов (электромагнетизм).

  1. Как измерить магнитное поле?

Мы измеряем магнитное поле по его силе и по направлению, которое оно указывает.

Каждое магнитное поле немного отличается. Некоторые магнитные поля большие, некоторые сильные, некоторые маленькие, а некоторые слабые.Например, магнитное поле Земли большое, но слабое.

Физическая близость (насколько близко или далеко) действительно имеет значение для магнетизма. Чем ближе вы стоите к магниту, тем сильнее будет магнитное поле. Чем дальше вы находитесь от магнита, тем слабее становится магнитное поле. (Магнитное поле никогда не заканчивается — оно становится все слабее и слабее, чем дальше вы уходите, в принципе, даже до бесконечности!)

Предположим, вы положили скрепку на стол. Если вы возьмете магнит и встанете с другой стороны комнаты от стола, скрепка отреагирует на магнитное поле вокруг магнита (хотя, вероятно, незаметно), но реакция будет очень и очень слабой.Однако, если вы подойдете ближе, поместите магнит на стол и сдвинете его к скрепке, будет точка, в которой скрепка соскочит со стола и полетит по воздуху к магниту! В этот момент магнитное поле будет достаточно сильным, чтобы преодолеть силы тяжести и трения, которые раньше препятствовали перемещению скрепки. (Это также отличный пример того, как магнитные силы могут вызывать движение!)

Гигантский магнит-подкова, притягивающий скрепку

3. Какие единицы мы используем для измерения напряженности магнитного поля?

Сила магнитного поля, называемая плотностью магнитного потока , измеряется в единицах Тесла (Международная система измерений или СИ). Есть также много других единиц и терминов, используемых в области электромагнетизма, включая Вебера, Максвелла, Гаусса и даже гамма 10 9 !

4. Как мы можем «увидеть» силы в магнитном поле?

Иногда мы рисуем линий поля , чтобы показать направление сил в разных местах магнитного поля.Силовые линии выходят из магнита на его северном полюсе, перемещаются по воздуху и снова входят в магнит через его южный полюс. Полевые линии не начинаются в одном месте и не заканчиваются в другом; магниты движутся по «замкнутым путям», что означает, что они будут продолжать двигаться по одному и тому же пути снова и снова.

Силовые линии магнитного поля вокруг стержневого магнита

Помните, что магнитное поле присутствует повсюду вокруг магнита, не только вдоль линий поля, которые мы проводим, но даже между линиями поля.Линии просто помогают нам визуализировать направление потока поля в различных местах вокруг магнита и даже внутри магнита.

Железные опилки, насыпанные на лист бумаги поверх стержневого магнита

Отличный способ увидеть силовые линии в магнитном поле — использовать железные опилки. Положите стержневой магнит на стол и накройте его листом бумаги. Затем насыпьте опилки на бумагу и наблюдайте, как они образуют узоры из линий, которые близко друг к другу на одном полюсе, более расходятся, когда они покидают этот полюс, и снова сближаются на другом полюсе магнита.Опилки выстраиваются вдоль силовых линий магнитного стержня!

5. Магнитные силы проникают не только в воздух?

Да! В эксперименте с железными опилками магнитные силы стержневого магнита воздействовали на опилки через лист бумаги. Магниты на холодильник делают то же самое, когда используются для отображения листа бумаги. Поднятие цепочки скрепок с помощью магнита показывает нам, что магнитные поля могут распространяться даже через сталь, от скрепки до скрепки!

Магнитные силы могут проникать в бумагу.Показаны магниты героев.

Угадайте, что? Силы магнитного поля могут проникать также через воду и многие другие вещества… даже через вашу руку!

(Показан магнитный жезл. Активность из набора массивных магнитов.)

Магнитные силы могут проникать через воду… и многие другие вещества!

Магнитные силы, пронизывающие руку! (Показаны магнитная палочка и стержневой магнит Север-Юг.Активность из набора Chunky Magnet Set.)

Теги: стержневой магнит, Dowling Magnets, подковообразный магнит, магнитное поле, силовые линии магнитного поля, Магнитное силовое поле, магнитные объекты, измерение магнитного поля

Поделиться:

8. Статические магнитные поля, подобные тем, которые используются в медицинской визуализации

8. Статические магнитные поля, подобные тем, которые используются в медицинской визуализации
  • 8.1 Каковы источники статических магнитных полей?
  • 8.2 Какие возможные воздействия статических магнитных полей на здоровье были изучены?
8.1 Каковы источники статических магнитных полей?

Сканеры МРТ используют статические магнитные поля
Кредит: Касуга Хуанг

Магнитное поле — это силовое поле, созданное магнитом или как следствие движение обвинений (поток электричества).Величина (интенсивность) магнитного поле обычно измеряется в Тесла (Т или мТл).

Статические магнитные поля делают не меняются со временем и поэтому не имеют частоты (0 Гц). Примерами являются поля, создаваемые постоянным магнитом или Магнитное поле Земли.

Искусственная статика магнитные поля генерируется везде, где используется электричество в виде постоянный ток (DC), например как в некоторых системах железной дороги и метро, ​​в промышленных процессах, таких как как производство алюминия, хлорно-щелочной процесс и газ сварка.

Количество искусственных источников таких полей ограничено, но есть быстрое развитие новых технологий, производящих статические поля. Количество людей с имплантированным металлом устройства, такие как кардиостимуляторы, на которые может воздействовать статический магнитные поля также растет.

Одно известное применение сильной статики магнитные поля Магнитно-резонансная томография (МРТ), который обеспечивает трехмерные изображения мягкого тела ткани, такие как мозг и спинной мозг.Этот метод медицинской визуализации использует очень мощные постоянные магниты, которые могут привести к сильной засветке уровни как для пациентов, так и для операторов.

Предыдущие оценки здоровья в основном смотрели на воздействие только статические поля, но многие приложения, особенно МРТ, может привести к облучению к сильным статическим полям в сочетании с радиочастотой и другие поля.Таким образом, недавние исследования начали рассматривать различные комбинации полей и их потенциальные эффекты. Подробнее …

8.2 Какие возможные воздействия статических магнитных полей на здоровье были изучены?

Имеется мало исследований о воздействии на человеческие популяции. статических полей и имеющихся свидетельств недостаточно для сделать какие-либо выводы о потенциальных последствиях воздействия на здоровье к статике магнитные поля.

Большое количество экспериментальных исследований по клеточные культуры были проводится с целью обнаружения биологических эффектов статического магнитные поля. Экспериментальными данными установлено, что статические магнитные поля может привести к изменению ориентации приложенных сил на биологические молекулы и сотовые компоненты с магнитными свойствами, такие как гемоглобин, родопсин (визуальный пигмент), свободные радикалы и оксид азота.Такие изменения могут влияют на эти биологические молекулы.

Исследования на людях-добровольцах указывают на возможные мгновенные влияние на функционирование нейронов при движении через статический магнитное поле или поле градиент, используемый в клинической практике.Эти исследования нуждаются в подтверждение.

Недавние исследования на животных подтверждают более ранние выводы о том, что статический магнитные поля нескольких milliteslas (mT) может оказывать прямое воздействие на нейроны. Исследования по клеточные культуры также показывают что воздействие статических магнитных полей в диапазоне миллитесла может изменить свойства мембраны.Эти изменения могут привести к изменения в функционировании нейронов, хотя эффекты кажутся обратимый.

Исследования по снижению боли у животных при воздействии статического электричества. магнитные поля в Миллитесла интересны. Вопрос в том, есть ли грызуны являются адекватной моделью для человека в этом отношении, поскольку не наблюдалось уменьшения боли у людей после воздействия статические магнитные поля в 10 раз сильнее.

Недавние эксперименты на животных показывают влияние статических полей на кровоток, рост сосудов, а также на рост и развитие, но некоторые результаты противоречивы и не проясняют смешанные результаты предыдущих исследований.

Статические поля, похоже, влияют на выражение специфические гены в клетки человека и другие млекопитающих, и эти эффекты могут зависеть от продолжительности воздействия и градиенты поля.Повреждение генетический материал был сообщили, хотя кажется, что эти эффекты можно исправить и не являются постоянными.

Хотя в 2007 г. было опубликовано изрядное количество исследований, 2008 г., по-прежнему отсутствуют адекватные данные для надлежащего оценка риска статического магнитные поля.Более необходимы исследования, особенно для того, чтобы прояснить многие смешанные и иногда противоречивые результаты.

Кратковременные эффекты наблюдались в первую очередь на сенсорном восприятии. функции при остром облучении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *