Гений катушка физика ток: Игра «Угадай Слово По Подсказке» – Гений катушка ток физика одним словом

Гений катушка ток физика одним словом

Ни одного общепринятого существительного придумать из предложенных букв не удалось. Пришлось переключиться на поиск ответа среди фамилий, владельцев которых признали гениями. Одна такая фамилия нашлась, это Никола Тесла.

В игре "Угадай слово по подсказке" подсказками на 693 уровне к слову "ГЕНИЙ" будут вот такие варианты:

  • КАТУШКА — на первом месте
  • ТОК — на вором месте
  • ФИЗИКА — на третьем месте.

А правильным ответом на этот уровень игры будет слово ТЕСЛА.

2 слова объединены общим смыслом, принадлежностью к одному классу понятий. его нужно постараться передать одним, в крайнем случае, двумя словами.

например: пшеница, овес — ? ответ: зерновые

хлеб, масло — ? ответ: пища

  1. яблоко, земляника
  2. сигареты, кофе
  3. часы, термометр
  4. нос, глаза
  5. эхо, зеркало
  6. картина, басня
  7. громко, тихо
  8. семя, яйцо
  9. герб, флаг
  10. кит, щука
  11. голод, жажда
  12. муравей, осина
  13. нож, проволока
  14. наверху, внизу
  15. благословение, проклятие
  16. похвала, наказание

чем больше правильно — тем больше вы гений! 5-10 — нормально

1.плоды,2.стимуляторы,3.приборы,4.органы чувств,5.отражение,6.произведение искусства,7.сила, 8.зародыши,9.символы,10.водные животные,11.органические потребности,12.живые организмы,13.металлические изделия,14.положение в пространстве,15.пожелания(санкции),16.меры воспитания

Автор Галя фетер задал вопрос в разделе Игры без компьютера

какие у вас асоцеации со словами гений, катушка, ток и получил лучший ответ

Ответ от
Никола Тесла

Западная Сибирь находится почти на одинаковом расстоянии
подробнее.

Грамота, похвальный лист — награждения.

«В чем отличие катушки с током от катушки с током и сердечником?» – Яндекс.Знатоки

Если вы сравниваете две одинаковых катушки по габаритам, количеству витков и способу намотки, то катушка с сердечником обладает значительно большей индуктивностью. С физической точки зрения это обуславливается следующим.

Если рассмотреть катушку, намотанную без сердечника или на основании, которое является магнитным диэлектриком, то протекающий по виткам электрический ток будет создавать магнитное поле внутри катушки согласно правила правой руки. Единственным проводником для электромагнитного поля, создаваемого катушкой, будет воздух, находящийся вокруг и внутри катушки. Если катушка не полая, а намотана на дерево, гетинакс или картон, соответственно, часть магнитного потока будет распространяться в них.

Если рассмотреть катушку, намотанную на сердечник, то принцип действия будет выглядеть идентично – при протекании электрического тока по виткам будет создаваться магнитный поток внутри катушки.

Но, в виду того, что витки помещены на сердечник, изготовленный из ферромагнитного материала, линиям магнитного поля будет значительно проще перемещаться в этом пространстве. Поэтому за счет наличия магнитного сердечника внутри катушки магнитное поле значительно усиливается, повышая индуктивность.

Благодаря чему можно получить более мощную катушку при тех же габаритных параметрах. Еще один вариант катушки с сердечником – это соленоид с втягиваемым сердечником. Такая катушка совершает механическую работу при протекании электрического тока по обмоткам и применяется в логических цепях.

6 потрясающих экспериментов: электричество, магнетизм и др.

6 потрясающих экспериментов электричество магнетизм и др
Физика – это точная наука со своими законами, для демонстрации которых можно ставить зрелищные опыты. Рассмотрим 6 интересных экспериментов.

1. Получение электричества от разности температур


Для опыта потребуется:

6 потрясающих экспериментов электричество магнетизм и др
В опыте используется элемент Пельтье, применяемый в системах охлаждения. При подаче на него напряжения происходит нагрев одной стороны прибора и охлаждение второй. При этом элемент может действовать и в обратном направлении – вырабатывать электричество при разности температур своих стенок.
6 потрясающих экспериментов электричество магнетизм и др
Если положить элемент Пельтье на холодный радиатор от платы, а сверху поставить чашку с кипятком, то прибор сгенерирует электричество. Выработанной энергии достаточно для питания микроэлектродвигателя.
6 потрясающих экспериментов электричество магнетизм и др

2. Доказательство весомости воздуха


Для опыта понадобятся:
  • рычажные весы;
  • 2 воздушных шарика;
  • иголка.

6 потрясающих экспериментов электричество магнетизм и др
Нужно надуть 2 шарика и повесить их на рычажные весы. Одни надуть изначально больше.
6 потрясающих экспериментов электричество магнетизм и др
Поскольку они оба имеют не идентичную массу, то плечи весов застывают не горизонтально. Если аккуратно проколоть иголкой один из шариков, то после спуска воздуха коромысло с ним поднимется. Эксперимент подтверждает, что воздух имеет вес.
6 потрясающих экспериментов электричество магнетизм и др

3. Электромагнитная пушка


Основываясь на силе Ампера можно сделать пушку. Для ее сборки потребуется:
  • пластиковая трубка до 30 см;
  • медная проволока с изоляцией;
  • 2 литиевые аккумуляторные батареи 18650 в кассете;
  • неодимовые магниты шайбы 5-8 шт.

6 потрясающих экспериментов электричество магнетизм и др
Нужно заглушить один конец пластиковой трубки. У ее края наматывается 50 витков проволоки. Один конец проволоки присоединяется к плюсовой или минусовой клемме кассеты с батареями. В трубку помещаются несколько неодимовых магнитов.
6 потрясающих экспериментов электричество магнетизм и др
Если замкнуть цепь катушки, подсоединив ее свободный конец ко второй клемме, то магниты будут вытолкнуты силой Ампера. Это происходит настолько быстро, что создается визуальное впечатление выстрела.
6 потрясающих экспериментов электричество магнетизм и др
6 потрясающих экспериментов электричество магнетизм и др

4. Электромагнитный попрыгун


Этот эксперимент работает по тем же физическим законам, что и магнитная пушка. Для его проведения потребуются такие же материалы, а также:
  • конденсатор 3300 мкФ 63 В;
  • проводок;
  • замыкатель цепи.

В конструкцию уже имеющейся магнитной пушки нужно включить конденсатор. На один из проводов катушки устанавливается самодельный замыкатель цепи, сделанный из шканта и проволоки. Он замыкает цепь катушки при нажатии, а при отсутствии давления размыкает.
6 потрясающих экспериментов электричество магнетизм и др
6 потрясающих экспериментов электричество магнетизм и др

6 потрясающих экспериментов электричество магнетизм и др
Замыкатель вставляется в трубку. Если опустить в нее магниты, то те прижав контакты замкнут цепь и сила Ампера их подтолкнет. Подпрыгнув вверх, а не вылетев полностью, поскольку импульс тока на катушке очень короткий, они снова упадут. Прыжки снаряда будут продолжаться, пока не разрядятся аккумуляторы.
6 потрясающих экспериментов электричество магнетизм и др
6 потрясающих экспериментов электричество магнетизм и др

5. Как заставить алюминий реагировать на неодимовые магниты


Можно создать условия, когда алюминий взаимодействует с магнитом. Для опыта потребуется:
  • алюминиевая пластина;
  • мощный магнит;
  • нитка;
  • 2 пачки от спичек.

6 потрясающих экспериментов электричество магнетизм и др

Просто приложив неподвижный магнит до алюминиевой пластины можно убедиться, что притяжения не будет. Если поставить пластину на два спичечных коробка, и подвесить над ней магнит, то при его раскачивании можно заметить пошатывание алюминия.
6 потрясающих экспериментов электричество магнетизм и др
Такой эффект возникает, поскольку когда магнит пролетая над пластиной, на ней зарождается электрический ток, создающий и электромагнитное поле. Оно взаимодействует с полем магнита, поэтому пластина и расшатываться.
6 потрясающих экспериментов электричество магнетизм и др
6 потрясающих экспериментов электричество магнетизм и др

6. Простейший электрогенератор на базе спиннера


Для опыта потребуется:
  • спиннер;
  • катушка;
  • диод;
  • микроэлектродвигатель;
  • неодимовые магниты.

6 потрясающих экспериментов электричество магнетизм и др
Можно запитать электродвигатель, если подключить к нему через диод катушку и воздействовать на нее вращающимися неодимовыми магнитами. Достаточно прикрепить постоянные магниты на лопастях спиннера и поставить его на стойку. Вращающиеся на нем магниты, поднесенные к катушке, вместе повторяют схему генератора электричества.
6 потрясающих экспериментов электричество магнетизм и др
6 потрясающих экспериментов электричество магнетизм и др
6 потрясающих экспериментов электричество магнетизм и др
Если подключить к такой катушке светодиод напрямую, то тот загорится. При этом свет будет мерцающим, что вызвано низкими оборотами постоянных магнитов.
6 потрясающих экспериментов электричество магнетизм и др
Если к вырабатывающей электричество катушке подсоединить еще одну подвесную катушку, в оси которой будут находиться магниты, то она начнет колебаться под воздействием силы Ампера. Конечно, только если запустить генератор со спиннера.
6 потрясающих экспериментов электричество магнетизм и др
6 потрясающих экспериментов электричество магнетизм и др
6 потрясающих экспериментов электричество магнетизм и др
6 потрясающих экспериментов электричество магнетизм и др

Смотрите видео


[media=https://www.youtube.com/watch?v=Cuobx2uPgY0]

Магнитное поле катушки с током. Электромагниты. Видеоурок. Физика 8 Класс

Наибольший практический интерес представляет собой магнитное поле катушки с током. Чтобы получить катушку, надо взять изолированный проводник и намотать его на каркас. Такая катушка содержит в себе большое количество витков провода. Обратите внимание: эти провода намотаны на пластмассовый каркас и у этого провода есть два вывода (рис. 1).

Рис. 1. Катушка

Исследованием магнитного поля катушки занимались два известных ученых: Андре-Мари Ампер и Франсуа Араго. Они выяснили, что магнитное поле катушки полностью соответствует магнитному полю постоянного магнита (рис. 2).

Рис. 2. Магнитное поле катушки и постоянного магнита


Почему магнитные линии катушки имеют такой вид

Если через прямой проводник протекает постоянный ток, вокруг него возникает магнитное поле. Направление магнитного поля можно определить по «правилу буравчика» (рис. 3).

Рис. 3. Магнтное поле проводника

Сгибаем этот проводник по спирали. Направление тока остается таким же, магнитное поле проводника так же существует вокруг проводника, поле разных участков проводника складывается. Внутри катушки магнитное поле будет сосредоточено. В итоге получим следующую картину магнитного поля катушки (рис. 4).

Рис. 4. Магнитное поле катушки

Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого проводника, можно обнаружить при помощи опилок (рис. 5). Линии магнитного поля катушки с током являются также замкнутыми.

Рис. 5. Расположение металлических опилок около катушки с током

Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой – к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса – северный и южный (рис. 6).

Рис. 6. Полюса катушки


 

На электрических схемах катушка обозначается следующим образом:

Рис. 7. Обозначение катушки на схемах

Катушки с током широко используют в технике в качестве магнитов. Они удобны тем, что их магнитное действие можно изменять в широких пределах.

Магнитное поле катушки велико по сравнению с магнитным полем проводника (при одинаковой силе тока).

При пропускании тока через катушку вокруг нее образуется магнитное поле. Чем больший ток протекает по катушке, тем сильнее будет магнитное поле.

Его можно фиксировать с помощью магнитной стрелки или металлической стружки.
Также магнитное поле катушки зависит от количества витков. Магнитное поле катушки с током тем сильнее, чем больше число витков в ней. То есть мы можем регулировать поле катушки, изменяя количество ее витков или электрический ток, протекающий по катушке.

Но самым интересным оказалось открытие английского инженера Стёрджента. Он продемонстрировал следующее: ученый взял и надел катушку на железный сердечник. Дело все в том, что, пропуская электрический ток по виткам этих катушек, магнитное поле многократно увеличивалось – и все железные предметы, которые находились вокруг, стали притягиваться к этому устройству (рис. 8). Это устройство получило название «электромагнит».

Рис. 8. Электромагнит

Когда сообразили сделать железный крючок и присоединить его к этому устройству, получили возможность перетаскивать различные грузы. Итак, что такое электромагнит?

 

Определение

Электромагнит – это катушка с большим количеством витков обмотки, надетая на железный сердечник, которая обретает свойства магнита при прохождении по обмотке электрического тока.

Электромагнит на схеме обозначается как катушка, а сверху располагается горизонтальная линия (рис. 9). Эта линия обозначает железный сердечник.

Рис. 9. Обозначение электромагнита

Когда мы изучали электрические явления, то говорили, что у электрического тока есть разные свойства, в том числе магнитные. И один из экспериментов, которые мы обсуждали, был связан с тем, что мы берем проволоку, присоединенную к источнику тока, наматываем на железный гвоздь и наблюдаем, как к этому гвоздю начинают притягиваться различные железные предметы (рис. 10). Вот это и есть простейший электромагнит. И теперь мы понимаем, что простейший электромагнит нам обеспечивают протекание тока в катушке, большое количество витков и обязательно – металлический сердечник.

Рис. 10. Простейший электромагнит

На сегодняшний день электромагниты очень широко распространены. Электромагниты работают практически везде и всюду. Например, если нам надо перетащить достаточно большие грузы, мы используем электромагниты. И, регулируя силу тока, мы будем, соответственно, силу либо увеличивать, либо уменьшать. Еще одним примером использования электромагнитов является электрический звонок.

Открытие и закрытие дверей и тормоза некоторых транспортных средств (например, трамвая) тоже обеспечиваются электромагнитами.

 

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Инернет-портал «interneturok.ru» (Источник)
  2. Инернет-портал «interneturok.ru» (Источник)
  3. Инернет-портал «class-fizika.narod.ru» (Источник)

 

Домашнее задание

  1. Что представляет собой катушка?
  2. У любой ли катушки есть магнитное поле?
  3. Опишите простейший электромагнит.

«В чем отличие катушки с током от катушки с током и сердечником?» – Яндекс.Кью

Если вы сравниваете две одинаковых катушки по габаритам, количеству витков и способу намотки, то катушка с сердечником обладает значительно большей индуктивностью. С физической точки зрения это обуславливается следующим.

Если рассмотреть катушку, намотанную без сердечника или на основании, которое является магнитным диэлектриком, то протекающий по виткам электрический ток будет создавать магнитное поле внутри катушки согласно правила правой руки. Единственным проводником для электромагнитного поля, создаваемого катушкой, будет воздух, находящийся вокруг и внутри катушки. Если катушка не полая, а намотана на дерево, гетинакс или картон, соответственно, часть магнитного потока будет распространяться в них.

Если рассмотреть катушку, намотанную на сердечник, то принцип действия будет выглядеть идентично – при протекании электрического тока по виткам будет создаваться магнитный поток внутри катушки.

Но, в виду того, что витки помещены на сердечник, изготовленный из ферромагнитного материала, линиям магнитного поля будет значительно проще перемещаться в этом пространстве. Поэтому за счет наличия магнитного сердечника внутри катушки магнитное поле значительно усиливается, повышая индуктивность.

Благодаря чему можно получить более мощную катушку при тех же габаритных параметрах. Еще один вариант катушки с сердечником – это соленоид с втягиваемым сердечником. Такая катушка совершает механическую работу при протекании электрического тока по обмоткам и применяется в логических цепях.

Исследовательская работа. Приборы и методы экспериментальной физики. Катушка Тесла.

Муниципальное образовательное учреждение

«Красноярская средняя общеобразовательная школа №2»

Жирновского муниципального района, Волгоградской области

                                         Исследовательская работа.

 

                            Приборы и методы экспериментальной физики.

                                                 Катушка Теслы.

                                                                Автор: Якутин Александр, 10 класс, 15 лет

                                                                          Руководитель: Пеньковская Татьяна Викторовна,

                                                                            учитель физики и информатики МОУ «КСОШ №2»

        

                                                                  2013 г.

Содержание:

  1. Актуальность и цели исследовательской работы.
  2. Тесла и его изобретения.
  3. Катушка Теслы.
  4. Схема установки.
  5. Результаты исследования.
  6. Современное применение идей Теслы.

1. Актуальность темы:

   Физика – это удивительная наука! Это наука из наук! Еще из незапамятных времен она  держалась и всегда будет держаться на трех китах:  гипотеза, закон, эксперимент. Экспериментальная физика имеет огромное значение в развитии науки. Эксперименты с электричеством… кажется, что тут еще можно открывать и экспериментировать, ведь сейчас мы воспринимаем электричество как самое обыденное явление: холодильник, телевизор, компьютер, микроволновка. Однако,  сам ток доходит к нам, увы, лишь по проводам. Это всё очень далеко от того, что Никола Тесла мог делать более 100 лет назад, и чего современная физика не может объяснить до сих пор. Ещё в 1900–х годах Тесла мог передавать на огромные расстояния ток без проводов, получить ток 100 млн. ампер и напряжение 10 тыс. вольт. И поддерживать такие характеристики любое необходимое время. Современная физика достичь таких показателей просто не в состоянии. Современные учёные достигли лишь планки в 30 миллионов ампер (при взрыве электромагнитной бомбы), и 300 миллионов при термоядерной реакции - да и то, на доли секунды. Однако, в наше время, энтузиасты и учёные мира пытаются повторить опыты гениального учёного и найти им применение. Я считаю себя одним из таких энтузиастов.

  Цель исследовательской работы:

  1. Собрать действующую катушку Тесла, изучить ее работу, пронаблюдать образование искрового разряда.
  2. Демонстрация невероятных свойств электромагнитного поля катушки Тесла и необыкновенно интересных опытов по применению катушки.

   Предмет исследования: Катушка Тесла.

   Гипотеза исследования: 1. Вокруг катушки Тесла образуется электромагнитное поле огромной напряженности 2. Электромагнитное поле катушки Тесла способно передавать электрический ток без проводным способом.

  1. Тесла и его изобретения.

  Ни́кола Те́сла (10 июля 1856 г (Хорватия) – 7 января 1943 г (Нью-Йорк, США)) — физик, инженер, изобретатель  в области электротехники  и радиотехники.

   Широко известен благодаря своему научно-революционному вкладу в изучение свойств электричества и магнетизма, теоретические работы Теслы дали основу для изобретения и развития многих современных устройств, работающих на переменном токе.  Именем Н. Теслы названа единица измерения магнитной индукции. Среди многих наград учёного — медали Э. Крессона, Дж. Скотта, Т. Эдисона. Современники-биографы считали Теслу «человеком, который изобрёл XX век» и «святым заступником» современного электричества, который  получил повсеместное признание как выдающийся инженер-электротехник и изобретатель. Его считают одним из гениев 20 века.   Многие изобретения Теслы до сих пор хранятся правительством США под грифом "Совершенно секретно". Он настолько обогнал науку, что многие из его опытов учёные не могут повторить даже сейчас. Он открыл переменный ток, флюоресцентный свет, беспроводную передачу энергии, построил первые электрические часы, турбину, двигатель на солнечной энергии. Он включал и выключал электродвигатель дистанционно, в его руках сами собой загорались электрические лампочки.  По идее, от экспериментатора не должно было бы остаться и уголька. А Тесла улыбался как ни в чём не бывало. Убивает не напряжение, а сила тока и ток высокой частоты проходит только по поверхностным покровам. Но это мы знаем сейчас. А Тесла знал это более 100 лет назад.
  Теоретики современной физики так и не смогли дать толкование взглядам Теслы на физическую реальность. Почему он сам не сформулировал своей теории? Ответа на этот вопрос мы уже не узнаем.
         
3. Катушка Тесла.
   С помощью катyшки pазмеpом в 61 метр, полюс котоpой возглавляла большая медная сфеpа, возвышающейся над его лабоpатоpией, Тесла генеpиpовал потенциалы, котоpые pазpяжались стpелами молний длиной до 40 метров. Гpом от высвобождаемой энеpгии мог быть yслyшан за 24 километра. Вокpyг экспеpиментальной башни пылал шаp света диаметpом в 30 метров.

Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способствует созданию внушительных электрических разрядов в воздухе. Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (телеуправление).

Вы не найдете трансформатор Теслы в кабинете физики в школе. Ими перестали комплектовать кабинеты.

 Аттракцион Dr Megavolt в Окленде (США)

Оригинальное противоугонное средство, работающее по принципу все тех же катушек.

Катушки Теслы  называют трансформаторами Теслы

     Некоторые катушки Тесла создавались с большим прицелом на будущее, другие - исключительно в развлекательных целях. Первый такой прибор, являющийся по сути классическим резонансным трансформатором, был создан и запатентован Николой Теслой еще в 1896 году.

К сожалению, катушки Теслы мы используем чаще, как красивые игрушки. И выглядим наверно, как человек, забивающий микроскопом гвозди...

  1. Схема установки.

Я хочу продемонстрировать вам работу одной из таких катушек Тесла и результаты исследования, которые я проводил. Установку я собирал сам на основе схемы «Качера Бровина». Это устройство производит высокое напряжение при высокой частоте.


Моя установка состоит из трех блоков.

 Первый блок (Блок 1) это так называемый блок питания всей установки он состоит из понижающего трансформатора Т (мощностью 9 ватт) с тремя обмотками. Первичная обмотка рассчитана на напряжение  220 вольт с частотой 50 герц. И две вторичных: первая на 40 вольт и вторая на 12 вольт.

 Второй блок (Блок 2) состоит из генератора высокой частоты на основе блокинг- генератора и выпрямителей напряжения от питающего трансформатора выполненный на 2-х полупроводниковых выпрямительных диодах(VD1-VD2) и фильтрующих электролитических конденсаторах(C2-C3), которые дают выпрямленное напряжение величиной 60В. Непосредственно сам генератор выполнен на одном транзисторе VT и пассивных деталей. Фильтр частот это конденсатор (С1) емкостью 0,1 мкФ.

 Третий блок (Блок 3) это и есть сам трансформатор Тесла (Т). Трансформатор представляет собой катушку с двумя обмотками. В отличие от других трансформаторов, здесь нет никакого ферромагнитного сердечника и таким образом взаимоиндукция между двумя катушками маленькая. Первичная (высоковольтная) обмотка намотана на пластиковый каркас диаметром 2,5 см, длиной 10см  и имеет около1500 витков, намотанных в один слой лакированным проводом  диаметром 0,05мм. Вторичная обмотка диаметром 6 см длиной около 5см и имеет 3,5 витка, намотанных проводом диаметром 1мм. Первичная обмотка вложена во вторичную. Работает установка очень просто, первый блок (Блок 1) дает напряжение для питания (Блок 2).

Демонстрирую работу катушки.

  1. Результаты исследования.

Можно подвести некоторые итоги. Мои гипотезы подтвердились: 1)  лампочки, наполненные инертным газом   светятся вблизи катушки, следовательно, вокруг установки действительно существует электромагнитное поле высокой напряженности; 2) лампочки загорались сами по себе у меня в руках на определенном расстоянии, значит, электрический ток может передаваться без проводов.

Необходимо отметить и еще одну важную вещь: действие этой установки на человека:

Как Вы заметили при работе меня не било током: токи высокой частоты, которые проходят по поверхности человеческого  организма не причиняют ему вреда, наоборот,  оказывают тонизирующее и оздоровительное действие, это используется даже в современной медицине. Однако надо заметить, что электрические разряды, которые Вы видели, имеют высокую температуру, поэтому долго ловить молнию руками не советую!

6. Современное применение идей Теслы:

  1. Переменный ток, впервые полученный Тесла,  является основным способом передачи электроэнергии на большие расстояния
  2. Электрогенераторы, которые изобрел Никола Тесла,  являются основными элементами в генерации электроэнергии на ГЭС, АЭС, ТЭС и т. д.
  3. Электродвигатели используются во всех современных электропоездах, электромобилях, трамваях, троллейбусах
  4. Радиоуправляемая робототехника получила широкое распространение не только в детских игрушках и беспроводных телевизионных и компьютерных устройствах (пульты управления), но и в военной сфере, в гражданской сфере, в вопросах военной, гражданской и внутренней, а также и внешней безопасности стран.
  5. Беспроводные заряжающие устройства начинают использоваться для зарядки мобильных телефонов или ноутбуков.
  6. Оригинальные современные противоугонные средства для автомобилей работают по принципу все тех же катушек.
  7. Использование в развлекательных целях и в медицине.

  Литература.

  1. Желько Сарич. Посвящённый. Роман о Николе Тесле.- М: Дельфис, 2010
  2. Марк Сейфер Абсолютное оружие Америки. - М: Эксмо, 2005.
  3. Пиштало В. Никола Тесла. Портрет среди масок. - М: Азбука-классика, 2010
  4. Ржонсницкий Б. Н. Никола Тесла. Жизнь замечательных людей. Серия биографий. Выпуск 12.   - М: Молодая гвардия, 1959.
  5. Цверава Г. К. Никола Тесла, 1856-1943. - Ленинград. Наука. 1974.
  6. Фейгин О. Никола Тесла: Наследие великого изобретателя. - М.: Альпина нон-фикшн, 2012.
  7. Интернет ресуры:

Тесла и его изобретения. http://www.374.ru/index.php?x=2007-11-19-20

Видеоподборка опытов Николы Тесла. http://ntesla.at.ua/news/2009-07-12-13

        

КАТУШКА ТЕСЛА И ИССЛЕДОВАНИЕ ЕЕ ВОЗМОЖНОСТЕЙ

КАТУШКА ТЕСЛА И ИССЛЕДОВАНИЕ ЕЕ ВОЗМОЖНОСТЕЙ

Кочнева Л.С. 1

1

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

О сколько нам открытий чудныхГотовят просвещенья духИ опыт, сын ошибок трудных,И гений, парадоксов друг,И случай, бог изобретатель...

А.С. Пушкин

Введение

Актуальность темы

Экспериментальная физика имеет огромное значение в развитии науки. Лучше один раз увидеть, чем сто раз услышать. Никто не будет спорить с тем, что эксперимент - это мощный импульс к пониманию сущности явлений в природе.

В наше время остро стоит вопрос о передаче энергии на расстояние, в частности передача энергии беспроводным способом. Здесь можно вспомнить идеи великого ученого Николы Тесла, который занимался этими вопросами еще в 1900х годах и добился внушительного успеха, построив свой знаменитый резонансный трансформатор – катушку Тесла. Вот и я решил разобраться в этом вопросе самостоятельно, попытавшись повторить эти эксперименты.

Цели исследовательской работы

-Собрать действующие катушки Тесла по транзисторной технологии (Class-E SSTC) и по ламповой технологии (VTTC)

-Пронаблюдать образование различных видов разрядов и выяснить, насколько они опасны.

-Передать энергию беспроводным способом, при помощи катушки Тесла

-Изучить свойства электромагнитного поля, генерируемого катушкой Тесла

-Изучить практическое применение катушки Тесла

Предмет исследования:

Две катушки Тесла, собранные по разным технологиям, поля и разряды, генерируемые этими катушками.

Методы исследования:

-Эмпирические: наблюдение высокочастотных электрических разрядов, исследование, эксперимент.

-Теоретические: конструирование катушки Тесла, анализ литературы и возможных электрических схем сборки катушки.

Этапы исследования:

-Теоретическая часть. Изучение литературы по проблеме исследования.

-Практическая часть. Изготовление трансформаторов Тесла и проведение опытов с построенным оборудованием.

Теоретическая часть

Изобретения Николы Тесла

Никола Тесла — изобретатель в области электротехники и радиотехники, инженер, физик. Родился и вырос в Австро-Венгрии, в последующие годы в основном работал во Франции и США.

Также он известен как сторонник существования эфира: известны многочисленные его опыты и эксперименты, целью которых было показать наличие эфира как особой формы материи, поддающейся использованию в технике. Именем Н. Тесла названа единица измерения плотности магнитного потока. Современники-биографы считали Тесла «человеком, который изобрёл XX век» и «святым заступником» современного электричества. Ранние работы Тесла проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение.

В феврале 1882 года Тесла придумал, как можно было бы использовать в электродвигателе явление, позже получившее название вращающегося магнитного поля. В свободное время Тесла работал над изготовлением модели асинхронного электродвигателя, а в 1883 году демонстрировал работу двигателя в мэрии Страсбурга.

В 1885 году Никола представил 24 разновидности машины Эдисона, новый коммутатор и регулятор, значительно улучшающие эксплуатационные характеристики.

В 1888—1895 годах Тесла занимался исследованиями магнитных полей и высоких частот в своей лаборатории. Эти годы были наиболее плодотворными, именно тогда он запатентовал большинство своих изобретений.

В конце 1896 года Тесла добился передачи радиосигнала на расстояние 48 км.

В Колорадо Спрингс Тесла организовал небольшую лабораторию. Для изучения гроз Тесла сконструировал специальное устройство, представляющее собой трансформатор, один конец первичной обмотки которого был заземлён, а второй соединялся с металлическим шаром на выдвигающемся вверх стержне. К вторичной обмотке подключалось чувствительное самонастраивающееся устройство, соединённое с записывающим прибором. Это устройство позволило Николе Тесле изучать изменения потенциала Земли, в том числе и эффект стоячих электромагнитных волн, вызванный грозовыми разрядами в земной атмосфере. Наблюдения навели изобретателя на мысль о возможности передачи электроэнергии без проводов на большие расстояния.

Следующий эксперимент Тесла направил на исследование возможности самостоятельного создания стоячей электромагнитной волны. На огромное основание трансформатора были намотаны витки первичной обмотки. Вторичная обмотка соединялась с 60-метровой мачтой и заканчивалась медным шаром метрового диаметра. При пропускании через первичную катушку переменного напряжения в несколько тысяч вольт во вторичной катушке возникал ток с напряжением в несколько миллионов вольт и частотой до 150 тысяч герц.

При проведении эксперимента были зафиксированы грозоподобные разряды, исходящие от металлического шара. Длина некоторых разрядов достигала почти 4,5 метров, а гром был слышен на расстоянии до 24 км.

На основании эксперимента Тесла сделал вывод о том, что устройство позволило ему генерировать стоячие волны, которые сферически распространялись от передатчика, а затем с возрастающей интенсивностью сходились в диаметрально противоположной точке земного шара, где-то около островов Амстердам и Сен-Поль в Индийском океане.

В 1917 году Тесла предложил принцип действия устройства для радиообнаружения подводных лодок.

Одним из его самых знаменитых изобретений является трансформатор (катушка) Тесла.

Трансформатор Тесла, также катушка Тесла — устройство, изобретённое Николой Тесла и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника, конденсаторов, тороида и терминала.

Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.

Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов.

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Во всех типах трансформаторов Тесла основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.

Практическая часть.

Катушка Тесла (Class-ESSTC)

Резонансный трансформатор состоит из двух катушек, у которых нет общего железного сердечника, - это нужно для создания низкого коэффициента связи. На первичной обмотке находится несколько витков толстого провода. На вторичную обмотку наматывают от 500 до 1500 витков. За счет такой конструкции катушка Тесла обладает таким коэффициентом трансформации, который в 10-50 раз больше, чем отношение количества витков на вторичной обмотке к количеству витков на первичной. При этом должно соблюдаться условие возникновения резонанса между первичным и вторичным колебательными контурами. Напряжение на выходе такого трансформатора может превышать несколько миллионов Вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров. В Интернете можно найти разные варианты изготовления источников высокой частоты и напряжения. Я выбрал одну из схем.

Рис.1

Установку я собирал сам на основе вышеуказанной схемы (Рис.1). Катушка, намотанная на каркасе от пластмассовой (сантехнической) трубы с диаметром 80 мм. Первичная обмотка содержит всего 7 витков, провод диаметром 1 мм, был использован одножильный медный провод МГТФ. Вторичная обмотка содержит около 1000 витков обмоточного провода диаметром 0,15 мм. Вторичная обмотка мотается аккуратно, виток к витку. В результате получилось устройство производящее высокое напряжение при высокой частоте. (Рис.2)

Рис.2

Большая катушка Тесла (VTTC)

Эта катушка собрана на базе генераторного пентода гу-81м по автогенераторной схеме, т.е. с самовозбуждением тока сетки лампы.

Рис.3

Как видно по схеме (Рис.3), лампа подключена как триод, т.е. все сетки объединены между собой. Конденсатор C1 и диод VD1 образуют однополупериодный удвоитель. Резистор R1 и конденсатор C3 нужны для регулировки режима работы лампы. Катушка L2 нужна для возбуждения тока сетки. Первичный колебательный контур образуется из конденсатора C2 и катушки L1. Вторичный колебательный контур образован катушкой L3 и ее собственной межвитковой емкостью. Первичная обмотка на каркасе диаметром 16 см содержит 40 витков с отводами от 30, 32, 34, 36 и 38 витков, для подстройки резонанса. Вторичная обмотка содержит около 900 витков на каркасе диаметром 11см. Сверху вторичной обмотки находится тороид, - он необходим для накопления электрических зарядов.

Рис.3

Обе этих установки (Рис.2 и Рис.3) предназначены для демонстрации высокочастотных токов высокого напряжения и способов их создания. Также катушки могут быть использованы для беспроводной передачи электрического тока. В ходе работы я продемонстрирую действие и возможности изготовленных мною катушек Тесла.

Экспериментальные опыты применения катушки Тесла

С готовой катушкой Тесла можно провести ряд интересных опытов, однако необходимо соблюдать правила безопасности. Для проведения опытов должна быть очень надежная проводка, вблизи катушки не должно быть предметов, должна быть возможность аварийно обесточить оборудование.

Во время работы катушка Тесла создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Обычно люди собирают эти катушки для того, чтобы посмотреть на эти впечатляющие, красивые явления.

Катушка Тесла может создавать несколько видов разрядов:

-Спарки - это искровые разряды между катушкой, и каким либо предметом, производит характерный хлопок, из-за резкого расширения газового канала, как при природной молнии, но в меньшем масштабе.

-Стримеры - тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Протекает от терминала катушки прямо в воздух, не уходя в землю. Стример - это видимая ионизация воздуха. Т.е. свечение ионов, которые образует высокое напряжение трансформатора.

-Коронный разряд - свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг высоковольтных частей конструкции с сильной кривизной поверхности.

-Дуговой разряд - образуется при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет. Между ним и терминалом загорается дуга.

Некоторые химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, натрий меняет голубоватый цвет разряда на оранжевый, бор — на зелёный, марганец – на синий, а литий – на малиновый окрас.

При помощи данных катушек можно провести ряд довольно интересных, красивых и эффектных экспериментов. Итак, начнем:

Опыт 1: Демонстрация газовых разрядов. Стример, спарк, дуговой разряд

Оборудование: катушка Тесла, толстая медная проволока.

Рис.4 и Рис.5

При включении катушки, с терминала начинает выходить разряд, который в длину 5-7мм

Опыт 2: Демонстрация разряда в люминесцентной лампе

Оборудование: катушка Тесла, люминесцентная лампа (лампа дневного света).

Рис.6 Рис.7

Наблюдается свечение в люминесцентной лампе на расстоянии до 1 м. от установки.

Опыт 3: Эксперимент с бумагой

Оборудование: катушка Тесла, бумага.

Рис.8 Рис.9

При внесении бумаги в разряд, стример быстро охватывает ее поверхность и через несколько секунд бумага загорается

Опыт 4: «Дерево» из плазмы

Оборудование: катушка Тесла, тонкий многожильный провод.

Рис.10

Разветвляем жилы у заранее зачищенного от изоляции провода, и, прикручиваем к терминалу, в результате получаем «дерево» из плазмы.

Опыт 5: Демонстрация газовых разрядов на большой катушке Тесла. Стример, спарк, дуговой разряд

Оборудование: большая катушка Тесла, толстая медная проволока.

Рис.11 Рис.12 Рис.13

При включении катушки, с терминала начинает выходить разряд, который в длину 45-50см, при поднесении предмета к тороиду - загорается дуга

Опыт 6: Разряды в руку

Оборудование: большая катушка Тесла, рука.

Рис.14 Рис.15

При поднесении руки к стримеру разряды начинают бить в руку, не причиняя боль

Опыт 7: Демонстрация газовых разрядов из предмета, находящегося в поле катушки Тесла.

Оборудование: большая катушка Тесла, толстая медная проволока.

Рис.16 Рис.17

Рис.18 Рис.19

При внесении медной проволоки в поле катушки Тесла (с убранным терминалом), происходит появление разряда из проволоки в сторону тороида.

Опыт 8: Демонстрация разряда в шаре, наполненного разреженным газом, в поле катушки Тесла

Оборудование: большая катушка Тесла, шар наполненный разреженным газом.

Рис.20 Рис.21

Рис.22 Рис.23

При внесении шара в поле катушки Тесла загорается разряд внутри шара.

Опыт 9: Демонстрация разряда в неоновых и люминисцентных лампах.

Оборудование: большая катушка Тесла, неоновые и люминисцентные лампы.

Рис.24 Рис.25

При внесении лампы в поле катушки Тесла загорается разряд внутри неоновых и люминисцентных ламп на расстоянии до 1,5 м..

Опыт 10: Разряды из руки

Оборудование: большая катушка Тесла, рука с напальчниками из фольги.

Рис.26 Рис.27 Рис.28

При внесении руки в поле катушки Тесла (с убранным терминалом), происходит появление разряда с напальчников в сторону тороида.

Заключение

Все поставленные цели выполнены. Я построил 2 катушки и на их примере доказал следующие гипотезы:

-Катушка Тесла может генерировать реальные электрические разряды различных видов.

-Разряды, создаваемые катушкой тесла, безопасны для человека и не могут нанести ему урон путем удара электрическим током. К выходной катушке высокого напряжения можно даже прикоснуться куском металла или рукой. Почему при прикосновении к источнику напряжения 1 000 000 В высокой частоты с человеком ничего не случается? Потому что при протекании тока высокой частоты наблюдается так называемый скин-эффект, т.е. заряды текут только по краям проводника, не трогая сердцевину.

Ток протекает по коже, и не касается внутренних органов. Именно поэтому можно безопасно касаться этих молний.

-Катушка Тесла может передавать энергию без проводов путем создания электромагнитного поля.

-Энергия этого поля может передаваться как на любые предметы в этом поле, от разреженных газов, до человека.

Современное применение идей Николы Тесла:

-Переменный ток является основным способом передачи электроэнергии на большие расстояния.

-Электрогенераторы являются основными элементами в генерации электроэнергии на электростанциях турбинного типа (ГЭС, АЭС, ТЭС).

-Электродвигатели переменного тока, впервые созданные Николой Тесла, используются во всех современных станках, электропоездах, электромобилях, трамваях, троллейбусах.

-Радиоуправляемая робототехника получила широкое распространение не только в детских игрушках и беспроводных телевизионных и компьютерных устройствах (пульты управления), но и в военной сфере, в гражданской сфере, в вопросах военной, гражданской и внутренней, а также и внешней безопасности стран и т. п.

-Беспроводные заряжающие устройства уже используются для зарядки мобильных телефонов.

-Переменный ток, впервые полученный Тесла, является основным способом передачи электроэнергии на большие расстояния

-Использование в развлекательных целях и шоу.

-В фильмах эпизоды строятся на демонстрации трансформатора Тесла, в компьютерных играх.

-В начале XX века трансформатор Тесла также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам, оказывая при этом «тонизирующее» и «оздоравливающее» влияние.

-Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.

Ошибочно мнение, что катушки Тесла не имеют широкого практического применения. Основное их использование приходится на развлекательно-медийную сферу развлечений и шоу. При этом сами катушки или устройства, использующие принципы работы катушек, довольно распространены в нашей жизни, о чем свидетельствуют вышеприведенные примеры.

Литература

  1. Пиштало В. Никола Тесла. Портрет среди масок. - М: Азбука-классика, 2010

  2. Ржонсницкий Б. Н. Никола Тесла. Жизнь замечательных людей. Серия биографий. Выпуск 12. - М: Молодая гвардия, 1959.

  3. Фейгин О. Никола Тесла: Наследие великого изобретателя. - М.: Альпина нон-фикшн, 2012.

  4. Тесла и его изобретения. http://www.374.ru/index.php?x=2007-11-19-20

  5. Цверава Г. К. Никола Тесла, 1856-1943. - Ленинград. Наука. 1974.

  6. Википедия https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D1%81%D0%BB%D0%B0,_%D0%9D%D0%B8%D0%BA%D0%BE%D0%BB%D0%B0

7. Никола Тесла: биография http://www.people.su/107683

Просмотров работы: 3114

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *