в чем разница между силовыми линиями
Магнитное и электрическое поля часто рассматриваются вместе, поскольку их можно назвать двумя сторонами одной медали. Для рассматриваемых понятий характерно много общих черт. К примеру, оба поля создаются электрическими зарядами. К тому же на все заряженные тела оказывает воздействие кулоновская сила. При этом существует и много отличий магнитного поля от электрического. Они затрагивают источники, графическое изображение, единицы измерения.
Содержание
Что такое электрическое поле?
В физике под этим понятием принято понимать векторное поле, которое формируется вокруг частиц или тел, обладающих определенным зарядом. Электрическое поле считается одной из двух неотъемлемых составляющих электромагнитного поля.
Чтобы лучше разобраться в природе этого явления, нужно вспомнить, что такое кулоновская сила. Закон Кулона служит для определения степени взаимодействия между каждым из пары точечных электрических зарядов. При этом он учитывает сведения об интервале между ними.
Чтобы разобраться в напряженности явления, стоит обратиться к такому примеру:
- Есть 2 тела, которые обладают зарядом. При этом одно из них является неподвижным, а второе – перемещается вокруг первого.
- Кулоновская сила в этом случае равняется произведению заряда и напряженности.
- Напряженность будет включать параметр центрального заряда и квадрат расстояния от центра до второго тела.
Примечательно, что для каждой точки электрического поля параметр кулоновской силы и направление будут отличаться. В силу разницы направлений в разных точках понятие считается векторным.
Что такое магнитное поле?
Под этим термином в физике понимают силовое поле, которое оказывает влияние исключительно на движущиеся тела, частицы или заряды. Каждый из элементов характеризуется магнитным моментом. Сила в таком случае меньше зависит от движения заряда. В качестве заряженных частиц в этом случае выступают электроны. Что касается напряженности этого вида поля, величина будет находиться в прямой пропорции от скорости заряда и его параметров.
В качестве лучшего примера стоит привести планету Земля. Ее центральная часть состоит из раскаленного железа. Как и другие металлические объекты, он может перемещать по себе электроны. Именно поэтому наибольшее магнитное поле на Земле формируется самой планетой, или ее центром, если сказать точнее. Если это поле исчезнет, высока вероятность катастроф и даже гибели живых организмов.
Мнение эксперта
Карнаух Екатерина Владимировна
Закончила Национальный университет кораблестроения, специальность «Экономика предприятия»
В качестве более стандартного примера такого понятия стоит привести электромагниты. Они, как правило, включают провода, которые обмотаны вокруг ферромагнетиков. Эти элементы представляют собой ряд веществ, которые приобретают магнитные характеристики лишь в том случае, если их температура ниже конкретного уровня. Последний параметр называют в физике температурой Кюре. По сути, ферромагнетики считаются уникальными элементами. Они вступают во взаимодействие с магнитным полем, но при этом не несут движущихся зарядов.
В чем разница между электрическим полем и магнитным полем?
Оба рассматриваемых понятия считаются силовыми. Это означает, что в каждой точке пространства, в которой действует поле, на заряд влияет конкретная сила. В другой точке ее значение будет отличаться. Электромагнитное поле оказывает воздействие на заряженные тела и частицы. При этом оно действует на все заряды, тогда как магнитное поле – исключительно на движущиеся.
Существуют вещества, которые взаимодействуют с магнитным полем, но не включают движущиеся заряды. К ним, в частности, относятся ферромагнетики. Этим понятие отличается от электрического поля, поскольку аналогичных веществ для него не существует. У магнитов, естественных или намагниченных тел существует 2 полюса. Их называют южным и северным.
Мнение эксперта
Карнаух Екатерина Владимировна
Закончила Национальный университет кораблестроения, специальность «Экономика предприятия»
Обычные электрические заряды считаются сравнительно однородными. Они не включают полюсов. При этом для таких зарядов характерно 2 типа – положительные и отрицательные. Знак оказывает воздействие на направление кулоновской силы. Как следствие, это влияет на взаимодействие двух заряженных частиц. Знак не будет оказывать влияния на взаимодействие других заряженных частиц с магнитным полем. Он только поменяет местами полюса.
Отличается и графическое изображение рассматриваемых физических явлений. Линии напряженности электрического поля обладают началом и концом. Их можно визуализировать. В качестве примера стоит привести кристаллы хинина в масле. Линии индукции замкнуты. Их тоже можно визуализировать. Примером этого служат металлические опилки.
Отдельно стоит упомянуть электромагнитное поле, которое обладает характеристиками как электрического, так и магнитного поля. Это означает, что оно способно в определенных условиях поворачивать стрелку компаса и перемещать электрически заряженные частицы. Обе составляющие имеют тесную взаимосвязь друг с другом. Каждая из них отличается своим энергетическим запасом. Именно он влияет на энергию всего электромагнитного поля.
Мнение эксперта
Карнаух Екатерина Владимировна
Закончила Национальный университет кораблестроения, специальность «Экономика предприятия»
Возникновение электромагнитного поля возможно при любом, даже небольшом изменении тока в проводниках. При этом оно оказывает влияние на прилегающие зоны пространства, передает им собственную энергию. В результате в этих местах тоже появляется электромагнитное поле.
Сравнительная таблица
Главные особенности и отличия рассматриваемых понятий приведены в таблице:
Критерий | Электрическое поле | Магнитное поле |
Источник поля | Электрический заряд. | Магнит, ток. |
Обнаружение поля | При взаимодействии заряженных частиц. | При взаимодействии магнитов, проводников с током. |
Графическое изображение | Силовые линии или линии напряженности. | Силовые линии или линии магнитной индукции. |
Характер линий | Имеют начало и конец. Начало силовых линий находится на положительных зарядах, а конец – на отрицательных. | Являются замкнутыми. Линии выходят из северного полюса и входят в южный. В магните они замыкаются. |
Взаимодействие элементов | Разноименные заряженные частицы притягиваются, одноименные – отталкиваются. | Разноименные магнитные полюса притягиваются, одноименные – отталкиваются. |
Силовая характеристика | Вектор напряженности, измеряется в ньютонах на кулон. | Вектор магнитной индукции, единицей измерения является тесла. |
Индикаторы поля | Мелкие кусочки бумаги Электрический султан Электрическая гильза. | Металлические опилки Магнитная стрелка Замкнутый контур с током. |
Принцип суперпозиции | Напряженность поля в определенной точке равна векторной сумме напряженностей полей, которые создаются каждым из зарядов по отдельности. | Магнитная индукция результирующего поля представляет собой векторную сумму индукции полей, которые создаются каждым источником по отдельности. |
Выводы
Оба рассматриваемых понятия изучаются разделом физики, который называется электромагнетизмом. Они представляют собой отдельные объекты, но имеют тесную взаимосвязь друг с другом. Электрическим полем называют область вокруг перемещающейся электрически заряженной частицы. Она также создает магнитное поле.
Электромагнитное поле — материалы для подготовки к ЕГЭ по Физике
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: электромагнитное поле.
Вспомним, каким образом Максвелл объяснил явление электромагнитной индукции. Переменное магнитное поле порождает вихревое электрическое поле. Если в переменном магнитном поле находится замкнутый проводник, то вихревое электрическое поле приводит в движение заряженные частицы этого проводника — так возникает индукционный ток, наблюдаемый в эксперименте.
Линии вихревого электрического поля охватывают линии магнитного поля. Если смотреть с конца вектора , то линии вихревого электрического поля идут по часовой стрелке при возрастании магнитного поля и против часовой стрелки при убывании магнитного поля. Такое направление вихревого электрического поля, напомним, задаёт направление индукционного тока в соответствии с правилом Ленца.
Таким способом Максвелл объяснил, почему в экспериментах Фарадея появлялся индукционный ток. Но затем Максвелл пошёл ещё дальше и уже без какой-либо опоры на экспериментальные данные высказал симметричную гипотезу: переменное электрическое поле порождает магнитное поле (рис. 1, 2).
Рис. 1. Симметричная гипотеза Максвелла (возрастание поля)
Линии этого магнитного поля охватывают линии переменного электрического поля и идут в другую сторону по сравнению с линиями вихревого электрического поля. Так, при возрастании электрического поля линии порождаемого магнитного поля направлены против часовой стрелки, если смотреть с конца вектора
Рис. 2. Симметричная гипотеза Максвелла (убывание поля)
Наоборот, при убывании электрического поля линии порождаемого магнитного поля идут по часовой стрелке (рис. 2, справа).
У электрического поля может быть два источника: электрические заряды и переменное магнитное поле. В первом случае линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных.
Во втором случае электрическое поле является вихревым — его линии оказываются замкнутыми.
У магнитного поля также может быть два источника: электрический ток и переменное электрическое поле. При этом линии магнитного поля замкнуты в обоих случаях (оно всегда вихревое). Максвелл предположил, что оба источника магнитного поля равноправны в следующем смысле. Рассмотрим, например, процесс зарядки конденсатора (рис. 3):
Рис. 3. Магнитное поле внутри конденсатора совпадает с магнитным полем тока
В данный момент по проводам, соединяющим обкладки конденсатора, течёт ток . Заряд конденсатора увеличивается, и, соответственно, возрастает электрическое поле между обкладками. Это переменное электрическое поле порождает магнитное поле . Так вот, согласно гипотезе Максвелла магнитное поле внутри конденсатора оказывается точно таким же, как и магнитное поле тока — как если бы ток протекал в пространстве между обкладками конденсатора.
Подчеркнём ещё раз, что симметричная гипотеза Максвелла была поначалу чисто умозрительной. На тот момент не наблюдалось каких-либо неясных физических явлений, для объяснения которых потребовалась бы такая гипотеза. Лишь впоследствии (и уже после смерти Максвелла) она получила блестящее экспериментальное подтверждение. Об этом — чуть ниже.
Прежде всего, симметричная гипотеза указала на то, что электрическое и магнитное поля тесно взаимосвязаны. Они не являются обособленными физическими объектами и всегда существуют рядом друг с другом. Если в какой-то системе отсчёта электрическое (магнитное) поле отсутствует, то в другой системе отсчёта, движущейся относительно первой, оно непременно появится.
Допустим, например, что в движущемся автомобиле покоится электрический заряд. В системе отсчёта, связанной с автомобилем, этот заряд не создаёт магнитного поля. Но относительно земли заряд движется, а любой движущийся заряд является источником магнитного поля. Поэтому наблюдатель, стоящий на земле, зафиксирует магнитное поле, создаваемое зарядом в автомобиле.
Пусть также на земле лежит магнит. Наблюдатель, стоящий на земле, регистрирует постоянное магнитное поле, создаваемое этим магнитом; коль скоро это поле не меняется со временем, никакого электрического поля в земной системе отсчёта не возникает.
Но относительно автомобиля магнит движется — приближается к автомобилю или удаляется от него. В системе отсчёта автомобиля магнитное поле меняется со временем — нарастает или убывает; наблюдатель в автомобиле фиксирует вихревое электрическое поле, порождаемое переменным магнитным полем нашего магнита.Но все инерциальные системы отсчёта абсолютно равноправны, среди них нет какой-то одной привилегированной. Законы природы выглядят одинаково в любой инерциальной системе отсчёта, и никакой физический эксперимент не может отличить одну инерциальную систему отсчёта от другой (это — принцип относительности Эйнштейна, о котором пойдёт речь в листке «Принципы СТО»). Поэтому естественно считать, что электрическое поле и магнитное поле служат двумя различными проявлениями одного физического объекта — электромагнитного поля
Таким образом, в произвольной, наудачу выбранной системе отсчёта будут присутствовать обе компоненты электромагнитного поля — поле электрическое и поле магнитное. Но может случиться и так, что в некоторой системе отсчёта, специально приспособленной для данной задачи, одна из этих компонент обратится в нуль. Мы видели это в наших примерах с автомобилем.
Электромагнитное поле можно наблюдать и исследовать по его действию на заряженные частицы. Силовой характеристикой электромагнитного поля является пара векторов и — напряжённость электрического поля и индукция магнитного поля. Сила, с которой электромагнитное поле действует на заряд , движущийся со скоростью , равна:
Силы в правой части нам хорошо известны. Сила действует со стороны электрического поля. Она не зависит от скорости заряда.
Сила действует со стороны магнитного поля. Её направление определяется по правилу часовой стрелки или левой руки, а модуль — по формуле , где — угол между векторами и .
Теория электромагнитного поля была создана Максвеллом. Он предложил свою знаменитую систему дифференциальных уравнений (уравнений Максвелла), которые позволяют найти векторы и в любой точке заданной области пространства по известным источникам — зарядам и токам (для однозначного нахождения полей необходимо знать ещё начальные условия — значения полей в начальный момент времени, а также граничные условия — некоторые условия для полей на границе рассматриваемой области). Уравнения Максвелла легли в основу электродинамики и позволили объяснить все известные на тот момент явления электричества и магнетизма. Но мало того — уравнения Максвелла дали возможность предсказывать новые явления!
Так, среди решений уравнений Максвелла обнаружились поля с неизвестными ранее свойствами — электромагнитные волны. А именно, уравнения Максвелла допускали решения в виде электромагнитного поля, которое может распространяться в пространстве, захватывая с течением времени все новые и новые области. Скорость этого распространения конечна и зависит от среды, заполняющей пространство. Но электромагнитные волны не нуждаются ни в какой среде — они могут распространяться даже сквозь пустоту. Скорость распространения электромагнитных волн в вакууме совпадает со скоростью света м/с ( сам свет также является электромагнитной волной).
Это был один из удивительных случаев в физике, когда фундаментальное открытие делалось «на кончике пера» — новое явление открывалось чисто теоретически, опережая эксперимент. Опытное подтверждение пришло позже: электромагнитные волны были впервые обнаружены в опытах Герца через восемь лет после смерти Максвелла. Эти опыты подтвердили справедливость симметричной гипотезы и основанной на ней теории электромагнитного поля, построенной Максвеллом.
Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Электромагнитное поле» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена: 08.07.2023
Электрические и магнитные поля
Содержание- Что делает NIEHS?
- Дополнительная литература
Введение
Электрические и магнитные поля (ЭМП) представляют собой невидимые области энергии, часто называемые излучением, которые связаны с использованием электроэнергии и различных форм естественного и искусственного освещения. ЭМП обычно группируются в одну из двух категорий по частоте:
- Неионизирующие : низкоуровневая радиация, которая обычно считается безвредной для человека
- Ионизирующее : излучение высокого уровня, которое может повредить клетки и ДНК
← Вернуться на страницу
Тип излучения | Определение | Формы излучения | Примеры исходников |
---|---|---|---|
Неионизирующий | Низкочастотное и среднечастотное излучение, которое обычно воспринимается как безвредное из-за недостаточной активности. |
|
|
Ионизирующий | Излучение средней и высокой частот, которое при определенных обстоятельствах может привести к повреждению клеток или ДНК при длительном воздействии. |
|
|
Могут ли ЭМП нанести вред моему здоровью?
В течение 1990-х годов большинство исследований ЭМП было сосредоточено на воздействии чрезвычайно низких частот от обычных источников энергии, таких как линии электропередач, электрические подстанции или бытовые приборы. Хотя некоторые из этих исследований показали возможную связь между силой поля ЭМП и повышенным риском детской лейкемии, их результаты показали, что такая связь была слабой. Несколько исследований, которые были проведены на взрослых, не показывают никаких доказательств связи между воздействием ЭМП и раком у взрослых, таким как лейкемия, рак головного мозга и рак молочной железы.
Сейчас, в эпоху сотовых телефонов, беспроводных маршрутизаторов и Интернета вещей, все из которых используют ЭМП, сохраняются опасения по поводу возможных связей между ЭМП и неблагоприятными последствиями для здоровья. NIEHS признает, что необходимы дополнительные исследования, и рекомендует продолжать обучение практическим способам снижения воздействия электромагнитных полей.
Излучает ли мой мобильный телефон ЭМП?
Сотовые телефоны излучают радиочастотное излучение в нижней части спектра неионизирующего излучения. В настоящее время научные данные не убедительно связывают использование сотовых телефонов с какими-либо неблагоприятными проблемами со здоровьем человека, хотя ученые признают, что необходимы дополнительные исследования.
Национальная токсикологическая программа (NTP) со штаб-квартирой в NIEHS провела токсикологические исследования на крысах и мышах, чтобы выяснить потенциальные опасности для здоровья, включая риск рака, от воздействия радиочастотного излучения, подобного тому, которое используется в сотовых телефонах 2G и 3G. Пожалуйста, посетите веб-страницу радиочастотного излучения сотового телефона, чтобы узнать больше.
Что делать, если я живу рядом с линией электропередач?
ЭМП: электрические и магнитные поля, связанные с использованием электроэнергии Буклет
Учебный буклет NIEHS, «ЭМП: электрические и магнитные поля, связанные с использованием электроэнергии»
Важно помнить, что сила магнитного поля резко уменьшается с увеличением расстояния от источника. Это означает, что сила поля, достигающего дома или сооружения, будет значительно слабее, чем была в точке его возникновения.
Например, по данным Всемирной организации здравоохранения в 2010 году, магнитное поле величиной 57,5 мГс непосредственно рядом с линией электропередачи на 230 киловольт составляет всего 7,1 мГс на расстоянии 100 футов и 1,8 мГс на расстоянии 200 футов.0003
Для получения дополнительной информации см. образовательный буклет NIEHS «ЭМП: электрические и магнитные поля, связанные с использованием электроэнергии».
Чем занимается NIEHS?
NIEHS Research Efforts
- Отчет NIEHS о воздействии на здоровье электрических и магнитных полей частоты сети электропередач: подготовлен в ответ на Закон об энергетической политике 1992 г. (PL 102-486, раздел 2118) (751KB) — подготовлен в ответ к Закону об энергетической политике 1992 г. (PL 102-486, Раздел 2118)
Дополнительная литература
Дополнительные ресурсы
- Электромагнитные поля и рак — Национальный институт рака
- IARC классифицирует радиочастотные электромагнитные поля как потенциально канцерогенные для человека. ВОЗ/Международное агентство по изучению рака (IARC) классифицирует радиочастотные электромагнитные поля как потенциально канцерогенные для человека (группа 2B) на основании повышенного риска развития глиомы, злокачественной опухоли. тип рака мозга1, связанный с использованием беспроводного телефона.
- Радиочастотный фон — Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США
- RadTown — узнайте о радиации в вашем городе: где она есть и как она используется. Исследуйте Бербс, сельскую местность, центр города или набережную. Просто выберите и нажмите! От Агентства по охране окружающей среды США
- Безопасность и здоровье на рабочем месте Темы: ЭМП (ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ПОЛЯ) — Национальный институт безопасности и гигиены труда (NIOSH)
Темы, связанные со здоровьем
- Радиочастотное излучение сотового телефона
Sermage-Faure C, Demory C, Rudant J, Goujon-Bellec S, Guyot-Goubin A, Deschamps F, Hemon D, Clavel J. Детская лейкемия вблизи высоковольтных линий электропередач — исследование Geocap, 2002 г. -2007. 2013 14 мая; 108 (9): 1899-906. doi: 10.1038/bjc.2013.128. Epub 2013 Apr 4. [Аннотация Sermage-Faure C, Demory C, Rudant J, Goujon-Bellec S, Guyot-Goubin A, Deschamps F, Hemon D, Clavel J. Детская лейкемия рядом с высоковольтными линиями электропередач — Geocap исследование, 2002-2007 гг. 2013 14 мая; 108(9)): 1899-906. doi: 10.1038/bjc.2013.128. Epub 2013 Apr 4.]
Этот контент доступен для использования на вашем веб-сайте.
Пожалуйста, посетите Синдикация NIEHS для начала. Назаднаверх
Physics4Kids.com: Электричество и магнетизм: Магнитные поля
Магнитные поля отличаются от электрических полей. Хотя оба типа полей взаимосвязаны, они выполняют разные функции. Идея силовых линий магнитного поля и магнитных полей впервые была рассмотрена Майкл Фарадей и позже Джеймс Клерк Максвелл . Оба этих английских ученых сделали великие открытия в области электромагнетизма .
Магнитные поля — это области, в которых объект проявляет магнитное влияние. Поля воздействуют на соседние объекты вдоль так называемых силовых линий магнитного поля. Магнитный объект может притягивать или отталкивать другой магнитный объект. Вы также должны помнить, что магнитные силы НЕ связаны с гравитацией. Величина гравитации зависит от массы объекта, а магнитная сила зависит от материала, из которого сделан объект.
Если вы поместите объект в магнитное поле, он будет затронут, и эффект будет происходить вдоль силовых линий. Во многих экспериментах в классе наблюдают, как маленькие кусочки железа (Fe) выстраиваются вокруг магнитов вдоль силовых линий. Магнитные полюса — это точки, в которых начинаются и заканчиваются силовые линии магнитного поля. Силовые линии сходятся или сходятся на полюсах. Вы, наверное, слышали о полюсах Земли. Эти полюса — места, где линии поля наших планет сходятся. Мы называем эти полюса северным и южным, потому что именно там они расположены на Земле. Все магнитные объекты имеют силовые линии и полюса. Он может быть маленьким, как атом, или большим, как звезда.
Вы знаете о заряженных частицах. Есть положительные и отрицательные заряды. Вы также знаете, что положительные заряды притягиваются к отрицательным зарядам. Французский ученый по имени Андре-Мари Ампер изучал взаимосвязь между электричеством и магнетизмом. Он обнаружил, что магнитные поля создаются движущимися зарядами (током). А на движущиеся заряды действуют магниты. С другой стороны, стационарные заряды не создают магнитных полей и не подвержены влиянию магнитов. Два провода с текущим током, расположенные рядом друг с другом, могут притягиваться или отталкиваться, как два магнита. Все дело в движущихся зарядах. Магниты являются простыми примерами естественных магнитных полей. Но знаете что? Земля имеет огромное магнитное поле. Поскольку ядро нашей планеты заполнено расплавленным железом (Fe), существует большое поле, которое защищает Землю от космической радиации и частиц, таких как солнечного ветра . Когда вы смотрите на крошечные магниты, они работают аналогичным образом. Вокруг магнита есть поле.Как отмечалось ранее, ток в проводах создает магнитный эффект. Вы можете увеличить силу этого магнитного поля, увеличив ток через провод. Мы можем использовать этот принцип для создания искусственных регулируемых магнитов, называемых 9.0016 электромагнитов , путем изготовления катушек из проволоки, а затем пропускания тока через катушки.
- Обзор
- Сборы
- Проводники
- Электрические поля
- Магнитные поля
- Текущий
- Сопротивление
- Закон Фарадея
- Закон Кулона
- Магниты
- Питание постоянного тока
- Питание переменного тока
- Дополнительные темы
Солнечные частицы и магнитное поле Земли (видео НАСА)
Encyclopedia.