Электрическое поле созданное переменным магнитным полем называют – Переменное электрическое поле — Большая Энциклопедия Нефти и Газа, статья, страница 1

Магнитное поле называют вихревым, а как называют электрическое поле?

Если говорить суровым математическим языком, вихревое поле – это поле, дивергенция которого равна нулю. То есть, говоря по-простому, это поле не имеет источников, а значит его силовые линии замкнуты. Такое поле может быть задано векторным потенциалом. Примером вихревого поля является магнитное поле. Источником магнитного поля является электрический ток. Силовые линии магнитного поля прямолинейнорго тока представляют собой окружности, центром которых является проводник с током. В определённом смысле противоположностью вихревым полям являются поля потенциальные. Это поля, ротор которых равен нулю, т. е. силовые линии незамкнуты, а начинаются/кончаются либо на источниках поля, либо уходят в бесконечность. Такое поле можно задать скалярным потенциалом. Примером потенциального поля являются электростатическое и гравитационное поле. Существует всеобщее заблуждение, что магнитное поле всегда вихревое, а электрическое – потенциальное. Это не так. Например, переменное магнитное поле порождает вихревое электрическое поле, силовые линии которого замкнуты вокруг силовых линий порождающего магнитного поля. Магнитное поле чисто потенциальным быть не может, так как не существует магнитных зарядов, порождающих это поле, но при определённых условиях в ограниченной области пространства магнитное поле можно считать близким к потенциальному. Такое поле называют магнитостатическим и широко используют в технических расчётах, например в расчёте магнитопроводов электродвигателей.

Статическое электричество. Их всего два вида: вихревое и статическое. Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Натрите какой-нибудь диэлектрик о шерсть или что-нибудь подобное, например, пластиковую ручку о собственные волосы. На ручке создастся заряд, а вокруг — электрическое поле. Заряженная ручка будет притягивать к себе мелкие обрывки бумаги. Если натирать о шерсть предмет большей ширины, например, резиновую ленту, то в темноте можно будет видеть мелкие искры, возникающие вследствие электрических разрядов. Электрическое поле часто возникает возле телевизионного экрана при включении или выключении телеприёмника. Это поле можно почувствовать по его действию на волоски на руках или лице.

только не статическое, а потенциальное. разница в другом. у вихревого поля все силовые линии замкнутые. у потенциального разомкнутые.

А нет электрического поля в Природе. И магнитное поле так же названо условно, а про вихры ее позабудьте. Все про единственное поле в нашей Вселенной есть в источнике. Это сложно.

touch.otvet.mail.ru

Электромагнитное поле

 «…Научная деятельность… единственное,

что переживает тебя и что на сотни и

тысячи лет врезается в историю человечества»

А.Ф. Иоффе

В прошлых темах говорилось о том, что в замкнутом контуре возникает индукционный ток при изменении магнитного потока, пронизывающего поверхность, ограниченную контуром. Это явление получило название явления электромагнитной индукции.

Из опытов Фарадея было установлено, что среднее значение ЭДС индукции в проводящем контуре  пропорционально скорости изменения магнитного потока через поверхность, ограниченную контуром. Данное утверждение выражает закон электромагнитной индукции.

Явление возникновения ЭДС индукции полностью подчиняется закону сохранения энергии. Вокруг контура, по которому проходит электрический ток, всегда существует магнитное поле, причем магнитное поле возникает и исчезает вместе с возникновением и исчезновением тока.

Таким образом, согласно закону сохранения энергии, энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент или генератор на электростанции)  на создание тока. При размыкании цепи эта

энергия переходит в другие виды.

Естественно предположить, что энергия магнитного поля должна равняться работе, которая затрачивается током на создания этого поля. При этом она равна именно работе против сил ЭДС самоиндукции, возникающей при замыкании цепи.

Рассчитаем эту работу. Для этого рассмотрим простейшую схему. Подключим к источнику тока проводящий контур с индуктивностью L.

Если теперь, с помощью ключа, замкнуть цепь, то за некоторый небольшой промежуток времени Dt сила тока увеличится от нуля до некоторого значения I. Также при этом возрастет и магнитный поток от нуля до некоторого значения LI.

Мгновенному нарастанию силы тока в цепи будет препятствовать явление

самоиндукции, возникающей в контуре.

Из курса физики 8 класса известно, что за некоторый промежуток времени через контур перенесется заряд, равный произведению силы тока на промежуток времени.

В рассматриваемом случае формула записана для равномерного возрастания силы тока в цепи. Если же ток в цепи будет нарастать не равномерно, то необходимо будет рассматривать малые промежутки времени, в течении которых можно считать скорость изменения силы тока постоянной.

При переносе заряда источник тока совершит работу, значение которой можно найти как произведение ЭДС самоиндукции, взятой с обратным знаком, и заряда, прошедшего через контур.

Подставив в полученную формулу, значение заряда и значение ЭДС самоиндукции, получим формулу для работы:

Значение этой работы, совершаемой источником тока против ЭДС самоиндукции, и будет равна энергии магнитного поля(вторая и третья часть формулы получены, путем выражения одной из величины из формулы для магнитного потока).

Вторая и третья часть формулы получены путем выражения одной из величин из формулы для магнитного потока.

Если магнитное поле создано током, проходящем в соленоиде, то энергию магнитного поля соленоида с токомможно рассчитать по формуле:

Согласно теории близкодействия, энергия магнитного поля (аналогично, как и энергия электрического поля) распределена по всему объему пространства, в котором существует  магнитное поле.

Величину, равную энергии магнитного поля, заключенной в единичном объеме этого поля, будем называть объемной плотностью энергии магнитного поля. Ее можно рассчитать по формуле:

Если рассмотреть движущийся проводник в магнитном поле, то возникновение ЭДС индукции объясняется довольно просто. Все дело в том, что при движении проводника в магнитном поле, происходит перераспределение зарядов внутри проводника: положительные заряды накапливаются на одном конце проводника, отрицательные — на другом. И это перераспределение зарядов будет происходить до тех пор, пока электрическая сила не скомпенсирует силу Лоренца.

Если разложить вектор силы Лоренца на две составляющие: направленные вдоль проводника и перпендикулярно ему, то именно продольная составляющая и будет совершать работу по разделению электрических зарядов. Если такой проводник замкнуть, то

по цепи пройдет индукционный ток.

Однако, если замкнутый проводник, находящийся в магнитном поле, неподвижен, то объяснить возникновение ЭДС индукции действием силы Лоренца нельзя, так как она действует только на движущиеся электрические заряды.

Однако, из курса физики 10 класса известно, что движение зарядов может происходить и под действием электрического поля. Значит, можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается переменным магнитным полем. К этому выводу впервые пришел Джеймс Клерк Максвелл.

Электрическое поле, создаваемое переменным магнитным полем, было названо индуцированным электрическим полем. Оно создается в любой точке пространства, где имеется переменное магнитное поле, независимо от того, имеется ли там проводящий контур или нет. Контур позволяет лишь обнаружить возникающее электрическое поле. Тем самым Максвелл обобщил представления Фарадея о явлении электромагнитной индукции, показав, что именно

в возникновении индуцированного электрического поля, вызванного изменением магнитного поля, состоит физический смысл явления электромагнитной индукции.

Индуцированное электрическое поле отличается от известных электростатического и стационарного электрический полей. Во-первых, оно вызвано не каким-то распределением зарядов, а переменным магнитным полем. Во-вторых, в отличии от линий напряженности электростатического и стационарного электрического полей, которые начинаются на положительных зарядах и заканчиваются на отрицательных зарядах, линии напряженности индуцированного поля — это замкнутые линии. Поэтому это поле — вихревое поле.

Как показали различные исследования, линии индукции магнитного поля и линии напряженности вихревого электрического поля расположены во взаимно перпендикулярных плоскостях. Вихревое электрическое поле связано с наводящим его переменным магнитным полем правилом

левого винта: если острие левого винта поступательно движется по направлению изменения вектора магнитной индукции, то поворот головки винта укажет направление линий напряженности индуцированного электрического поля.

В-третьих, индуцированное электрическое поле не является потенциальным. Разность потенциалов между любыми двумя точками проводника, по которому проходит индукционный ток, равна нулю. Работа же, совершаемая этим полем при перемещении заряда по замкнутой траектории, не равна нулю. Т.е., в этом случае, ЭДС индукции и есть работа индуцированного электрического поля по перемещению единичного заряда по рассматриваемому замкнутому контуру. Поэтому не потенциал, а именно ЭДС индукции является энергетической характеристикой индуцированного поля.

В середине 60-ых годов 19 века Джеймс Максвелл пришел к выводу о том, что наряду с процессом появления вихревого электрического поля при изменении магнитного поля, должен существовать и обратный процесс, состоящий в том, что переменное электрическое поле вызывает появление переменного магнитного поля, линии индукции которого охватывают линии напряженности переменного электрического поля и связаны с ним правилом правого винта.

Согласно гипотезе Максвелла магнитное поле, например, при зарядке конденсатора после замыкания ключа создается не только током в проводнике, но и изменяющимся электрическим полем, существующим в пространстве между обкладками конденсатора. Причем изменяющееся электрическое поле создает такое же магнитное поле, как если бы между обкладками существовал электрический ток, такой же, как и в проводнике.

Таким образом, Максвелл сделал вывод о том, что вихревое электрическое и магнитное поля "сцеплены" друг с дру­гом, существуют одновременно и взаимно порождают друг друга. Совокупность неразрывно связанных друг с другом вихревых электрического и магнитного полей называют электромагнитным полем.

Примечательно то, что Максвелл предсказал существование электромагнитного поля за 22 года до того, как оно было обнаружено экспериментально.

После открытия взаимосвязи между изменяющимися электрическим и магнитным полями стало ясно, что эти поля не существуют обособленно, независимо одно от другого. Т.е. нельзя создать переменное магнитное поле без того, чтобы одновременно в пространстве не возникло и электрическое поле. И наоборот, переменное электрическое поле не может существовать без магнитного.

Отдельное же рассмотрение электрического и магнитного полей имеет только относительный смысл. Так, если электростатическое поле создается системой неподвижных зарядов, то эти заряды, являясь неподвижными относительно одной инерциальной системы отсчета, могут двигаться относительно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, в системе отсчета связанной с магнитом, обнаруживается лишь магнитное поле. Но движущийся относительно магнита наблюдатель обнаружит и электрическое поле. Ведь в системе отсчета, движущейся относительно магнита, магнитное поле будет меняться с течением времени по мере приближения наблюдателя к магниту или удаления от него. А, как мы уже выяснили, переменное во времени магнитное поле порождает вихревое электрическое поле.

Таким образом, мы можем сделать вывод о том, что в природе существует единое электромагнитное поле, т.е. особый вид материи, посредством которой осуществляются электромагнитные взаимодействия в природе.

Упражнения.

Задача: если бы можно было создать большие сверхпроводящие катушки без внешнего источника тока, индуктивностью, например, 100 Гн, то какое количество льда, взятого при температуре плавления, можно превратить в воду и нагреть до 100° С за счет энергии магнитного поля этой катушки, если сила тока в ней составляет 10 кА?

Основные выводы:

Магнитное поле, на подобие электрического, обладает энергией, прямо пропорциональной квадрату силы тока.

Гипотеза Максвелла: переменное электрическое поле порождает переменное магнитное поле. И, наоборот, в любой области пространства, где существует переменное магнитное поле, появляется вихревое электрическое поле.

Электромагнитное поле — это особый вид материи, посредством которой осуществляются электромагнитные взаимодействия в природе.

videouroki.net

A. Вихревое поле — PhysBook

Вихревое электрическое поле

Если замкнутый проводник, находящийся в магнитном поле, неподвижен, то объяснить возникновение ЭДС индукции действием силы Лоренца нельзя, так как она действует только на движущиеся заряды.

Известно, что движение зарядов может происходить также под действием электрического поля Следовательно, можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается переменным магнитным полем. К этому выводу впервые пришел Дж. Максвелл.

Электрическое поле, создаваемое переменным магнитным полем, называется индуцированным электрическим полем. Оно создается в любой точке пространства, где имеется переменное магнитное поле, независимо от того, имеется ли там проводящий контур или нет. Контур позволяет лишь обнаружить возникающее электрическое поле. Тем самым Дж. Максвелл обобщил представления М. Фарадея о явлении электромагнитной индукции, показав, что именно в возникновении индуцированного электрического поля, вызванного изменением магнитного поля, состоит физический смысл явления электромагнитной индукции.

Индуцированное электрическое поле отличается от известных электростатического и стационарного электрического полей.

1. Оно вызвано не каким-то распределением зарядов, а переменным магнитным полем.

2. В отличие от линий напряженности электростатического и стационарного электрического полей, которые начинаются на положительных зарядах и заканчиваются на отрицательных зарядах, линии напряженности индуцированного поля — замкнутые линии. Поэтому это поле — вихревое поле.

Исследования показали, что линии индукции магнитного поля и линии напряженности вихревого электрического поля расположены во взаимно перпендикулярных плоскостях. Вихревое электрическое поле связано с наводящим его переменным магнитным полем правилом левого винта:

если острие левого винта поступательно движется по направлению ΔΒ, то поворот головки винта укажет направление линий напряженности индуцированного электрического поля (рис. 1).

Рис. 1

3. Индуцированное электрическое поле не является потенциальным. Разность потенциалов между любыми двумя точками проводника, по которому проходит индукционный ток, равна 0. Работа, совершаемая этим полем при перемещении заряда по замкнутой траектории, не равна нулю. ЭДС индукции и есть работа индуцированного электрического поля по перемещению единичного заряда по рассматриваемому замкнутому контуру, т.е. не потенциал, а ЭДС индукции является энергетической характеристикой индуцированного поля.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 350-351.

www.physbook.ru

Вихревое электрическое поле

Вихревое электрическое поле - это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.

Переменное магнитное поле порождает инду­цированное электрическое поле. Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.

   Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

   Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

   Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

   В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

   Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

   Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.

   Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами; 
2) Силовые линии этого поля всегда замкнуты; 
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле
( вихревое электр. поле )

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

infofiz.ru

Что называется магнитным полем и какими свойствами оно обладает?

Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами. 1. Оно материально, т. е. существует независимо от наших знаний о нем. 2. Порождается только движущимся электрическим зарядом: вокруг любого движущегося заряженного тела существует магнитное поле. Магнитное поле может быть создано и магнитом, но и там, причиной появления поля является движение электронов. Магнитное поле может быть создано и переменным электрическим полем. 3. Обнаружить это поле можно по действию на движущийся электрический заряд (или проводник с током) с некоторой силой. 4. Это поле распространяется в пространстве с конечной скоростью, равной скорости света в вакууме.

физику слабо почитать

<a rel="nofollow" href="http://electrono.ru/elektromagnetizm-i-elektromagnitnaya-indukciya/16-magnitnoe-pole-i-ego-osnovnye-xarakteristiki" target="_blank">http://electrono.ru/elektromagnetizm-i-elektromagnitnaya-indukciya/16-magnitnoe-pole-i-ego-osnovnye-xarakteristiki</a>

touch.otvet.mail.ru

Последнее уравнение может быть приведено к дифференциальной форме.

Для этого воспользуемся теоремой Стокса и преобразуем контурный интеграл от вектора E к поверхностному:

 

 

B

 

 

 

 

E, d l

rot E, d S

 

t

, d S

 

 

S

S

 

(ротором или вихрем называется величина, равному векторному произведению [ , С] и обозначается как rotС.)

Поскольку контур L и поверхность S произвольны, то последнее равенство имеет место лишь при условии

rot E B

t

Это соотношение является дифференциальной формой закона электромагнитной индукции и представляет одно из основных уравнений теории электромагнитного поля (уравнение Максвелла).

Как мы видели в электростатике, для неподвижных зарядов электрическое поле являлось потенциальным и может быть выражено через энергетическую характеристику электростатического поля – потенциал :

E= –grad ,

ионо не могло обеспечить движение зарядов по замкнутым проводам, поскольку в этом случае

 

 

E, d l

rot grad d S 0

его работа

S

заряда по

замкнутому контуру равна нулю.

Но электрическое поле, порождаемое переменным магнитным полем, не потенциально, а является вихревым полем.

Оно имеет конечную тангенциальную составляющую при перемещении заряда по замкнутому контуру и способно вызвать непрерывное течение электричества в замкнутых проводниках, т.е. появление индукционных токов.

Если электрическое поле создается одновременно неподвижными зарядами q, для которых

rotEq = 0,

и переменным магнитным полем B, в соответствии с уравнением Максвелла,

rot EB

 

B

 

 

 

 

 

t

то полное поле E = Eq + EB также удовлетворяет

уравнению Максвелла

 

 

 

 

rot E

B

 

 

t

 

 

Поскольку изменение со временем вектора В приводит к появлению вихревого электрического поля, способного вызвать индукционные токи в замкнутых проводниках, то вектор В и получил название вектора магнитной индукции.

Явление возникновения ЭДС индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.

Самоиндукция представляет частный случай электромагнитной индукции.

Направление ЭДС самоиндукции препятствует возрастанию тока в цепи при его увеличении и его убыванию при уменьшении тока в цепи.

Самоиндукция подобна инерции в механическом движении.

Поток вектора магнитной индукции ,

посылаемый током I через свой собственный контур, равен

= LI,

где L – коэффициент самоиндукции – индуктивность произвольного замкнутого контура.

Величина индуктивности L определяется геометрией контура, числом витков N, магнитными свойствами окружающей среды.

В частности, для соленоида с магнитным

сердечником

 

 

N

2

L

0

 

 

 

V

l

где – магнитная

 

 

 

сердечника; N, l,

 

 

 

 

V – полное число витков, длина и объем соленоида. Таким образом, ЭДС самоиндукции равна

= d LI dt

studfile.net

Переменное магнитное поле

Переменное магнитное поле 1 Магнитное поле всегда возникает вокруг движущихся электрических зарядов, или при взаимодействии тел, обладающих магнитным моментом. Поскольку современные электрические сети используют в основном переменный электрический ток, то магнитное поле изменяет своё значение и направление периодически. Таким образом, можно сказать, что большинство электрических сетей являются источниками переменного магнитного поля.

Величина магнитного поля характеризуется векторной величиной — магнитной индукцией (B).

Переменное магнитное поле

Движущиеся в магнитном поле частицы, движутся под действией силы Лоренца. Именно этой силой часто характеризуют магнитную составляющую в электромагнитном поле. Она характеризует напрваление движенися конкретных частиц. Под действием электромагнитного поля на проводник, в нём возникает ток, величина которого определяется законом Ампера.

Переменное магнитное поле используется в промышленности для различных технологических и производственных целей, а также нашло широкое применение в медицине, биологии и других областях.

Размагничивание стали

Для размагничивания ферромагнетиков используется затухающее переменное магнитное поле. При этом необходимо учитывать, что чем больше частота переменного магнитного поля, тем меньше глубина его проникновения в материал. Так, в сплошную сталь переменное магнитное поле частотой 10-ти герц проникает примерно на 10 миллиметров. Для размагничивания объёмных сплошных деталей используются переменные магнитные поля с небольшой частотой в единицы герц, но большой мощности. Скорость затухания частоты в таких устройствах регулируется контроллером.

Применение магнитных полей в промышленности

Сепарация взвешенных жидкостей

В нефтедобывающей промышленности применяются переменные магнитные поля. С их помощью выполняется обработка тонкодисперсной эмульсии. Эта эмульсия является продуктом смешения нефти с водой, что входит в технологический цикл нефтедобычи. При отстаивании эмульсии происходит разделение слоёв воды и нефти, но это достаточно длительный и, следовательно, дорогостоящий процесс. Воздействие переменным магнитным полем на эмульсию позволяет существенно ускорить процесс разделения сред.

Медицина

Переменные магнитные поля способны отказывать влияние на клетки и микроорганизмы, которые являются устойчивыми к другим типам воздействия (УФ-облучению, антибиотикам, вирусам, фагам и т.д.). Таким образом удаётся бороться с некоторыми враждебными человеку микроорганизмами.

В основе работы многих физиотерапевтических аппаратов лежит переменное магнитное поле, особенно СВЧ-диапазона. Такие устройства сейчас разделяют на две категории в зависимости от используемой длины волны: «ДЦВ-терапия» и «микроволновая терапия». Наиболее разработана на сегодняшний день теория о тепловом влиянии СВЧ-полей на организмы.

Под воздействием переменного магнитного поля высоких частот происходит периодическая переориентация электрических диполей в организме, что вызывает нагрев тканей. При этом ткани, на которые будет оказываться наибольшее влияние можно выбрать в зависимости от используемой частоты переменного магнитного поля.

pue8.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *