Серверный компьютер – ?

Содержание

стоит ли ставить серверное железо в домашний ПК? / Kingston Technology corporate blog / Habr

Привет, Гиктаймс! Народное поверье гласит, что трава у соседа всегда зеленее, а компьютеры, которые для своих нужд закупают дотошные предприниматели, надёжнее и производительнее, чем сдобренные маркетингом модели в рознице. Целая каста энтузиастов охотится на серверные комплектующие и боготворит производительность железа корпоративного класса. Разбираемся, действительно ли крупные организации плещутся в «IT-раю», или же гики сотворили себе идола из ничего?


Нет преград энтузиастам, особенно если эти преграды воздвигнуты коварными маркетологами, которые поделили все электронные устройства на корпоративные и консьюмерские! Потому что даже в СМИ с рекламой о загадочном «пользовательском опыте» разработчики софта и железа проговариваются, мол, «камера этого смартфона обеспечивает профессиональное качество снимков!», да и другим образом штамп о профессионалах, которые ерундой не пользуются, эксплуатируют уже давно. И если уж искать пресловутую «профессиональную технику» и качество услуг, то лучше вопрошать железо и методы обслуживания корпоративного класса, верно?

Мотивы, которыми руководствуются неугомонные энтузиасты, лежат на поверхности — пусть консьюмерская техника и развивается бодрее за счёт аппетитов покупателей, «закаленные боями» комплектующие корпоративного класса явно будут надёжнее, а на вторичном рынке — ещё и дешевле. Играют же как-то гики на видеокартах для рабочих станций, собирают же могучие и «вечные» домашние ПК с серверной начинкой! Стало быть, есть смысл попытать счастья?

И толика этого самого смысла в подобное затее, разумеется, есть, но с приобретением корпоративных «атрибутов» под домашние условия можно «влипнуть» и, в лучшем случае, переплатить за невостребованную функциональность, а в худшем — уйти в минус в сравнении с вариантами, доступными для розничного покупателя. Разбираемся, в чём состоит подвох в использовании железа, разработанного для корпораций.

Серверный — тоже игровой. Intel Xeon в домашних ПК


Первое, что приверженцы технологий любят использовать из корпоративного сегмента — серверные процессоры. Не экзотические, а наиболее «понятные», то есть, на базе архитектуры x86. Удовольствие это не из дешёвых, поэтому «зеоноводы», условно говоря, включают в себя два лагеря с немного разными ориентирами в постройке ПК:


Xeon — изначально не для игр и «гонок» в бенчмарках, но иногда бывают полезны

Энтузиасты, нацеленные на High-End комплектующие. Это такой уровень, когда крупносерийных версий Intel Core i7 уже недостаёт, а при взгляде на платформу LGA-2011 (любого из поколений) на ум приходят мысли о том, что «суперзаряженные» Core i7 предлагают «те же яйца», только в меньшем количестве и без разгона.

Потому что, коль уж мы говорим о цене, случались в истории моменты, когда восьмиядерные Xeon оказывались эдак на треть дешевле и значительно «холоднее», чем 6-ядерные Core i7 Extreme Edition. Например, так было после дебюта чипов Intel Haswell-E в 2014 году — во-первых, что разница в цене между шестиядерным Core i7-5960X и «гражданским» четырёхъядерником i7-4790K составляла жалкие 15%. А во-вторых, младший серверный восьмиядерный Xeon E5-2609 v4 стоил примерно на 30% дешевле, чем кандидат из лагеря Haswell-E. При этом, в отличие от «просто» Core i7 в Xeon ниже уровень TDP и отсутствует бесполезная для энтузиастов интегрированная в процессор графика.

При этом кэша L3 во всех трёх моделях навалено тоннами, а частота, хоть ниже в Xeon, но убеждения «в работе ядра лишними не бывают» и «очень скоро игры оптимизируют таким образом, чтобы они работали быстро на 8 и более ядрах» не дают экономным любителям скорости покоя, после чего горячие парни отправляют младшие версии Xeon в чипсет Intel X99 и… никому не признаются, как обстоят дела в играх.

Потому четыре ядра, разбавленных с помощью Hyper-Threading, почти всегда оказываются эффективнее в играх, чем восемь низкочастотных «горшков» в Xeon, которые даже разогнать никак нельзя (заблокированный множитель, околонулевой разгон по шине).

«Кулибины», которые захотели модернизировать старую платформу при минимальных затратах. Например, приобрести взамен старого процессора Core 2 Duo не старый Quad, а гораздо более крутой и высокочастотный четырёхъядерный Xeon X5460, который с помощью нехитрого переходника можно установить не в серверную материнскую плату с Socket 771, а в «гражданскую» для Socket 775.

Главное в таком сценарии — озаботиться качественным охлаждением (серверные «камни» щеголяют TDP порядка 120 Вт взамен 95 Вт у стандартных четырёхъядерников), но в итоге такой вариант апгрейда с очень старой платформы до «терпимо старой» себя оправдывает, тем более, что на некоторых матплатах процессор можно разогнать аж до 4 ГГц.

И ведь у «Зионов» есть преимущества, которыми они компенсируют свою многоядерную нерасторопность в играх! Например, возможность городить мультипроцессорные конфигурации, с которыми кодирование видео/музыки/фото и CAD-моделирование происходит намного быстрее, чем в топовых Core i7 Extreme. Поддержка регистровой памяти с ECC, к примеру, позволяет исправлять ошибки «на лету», а это пригождается при большом аптайме (сервер же!). Поддержка «конских» объёмов ОЗУ и огромное количество ядер тоже придутся ко двору, когда серверу нужно обработать входящие соединения максимально быстро. Но всё это почти бесполезно в домашнем ПК.

А полезно для него — много ядер на высокой частоте. Если эти условия соблюдены, сам процессор совместим с платформами LGA 2011 или LGA 2011-3 и обходится дешевле, чем «просто» Core i7 — смысл в его приобретении есть. В противном случае лучше либо обойтись массовыми четырёхъядерниками о восьми потоках, либо конструировать рабочую станцию под конкретные сценарии использования (рендеринг, кодирование).


Высокочастотные Intel Xeon (если они дешевле мейнстрим CPU) могут стать хорошим подспорьем не только в работе, но и в играх (источник: ferra.ru)

Косите фраги на рабочей станции с хакнутыми драйверами NVIDIA


Если с использованием серверного процессора можно играть скорее вопреки, чем благодаря установленному железу, то графика, которую должно использовать для видеомоделирования или проектирования, исторически была крутой в игровых дисциплинах. В противостоянии AMD и NVIDIA даже сценарии «нецелевого использования» видеоускорителей всегда были разными: «красные» геймерские видеокарты ещё недавно были нарасхват у майнеров, а NVIDIA Quadro, так уж исторически, уговаривали переквалифицироваться в игровую видеокарту.


Профессиональные видеокарты NVIDIA Quadro значительно производительнее своих игровых сородичей

Причём Quadro для этих целей вполне подходит — дело в том, что игровые GeForce чаще всего представляют собой профессиональную видеокарту с частично отключенными конвейерами графического процессора (от маркетинговых соображений до отбраковки чипа) по более доступной цене. Например, новая профессиональная видеокарта Quadro P6000 содержит наиболее «полную» версию графического чипа GP102 и по этой причине обходит в производительности крутую геймерскую GeForce 1080 почти на 20%, да и могучий Titan X на базе всё той же архитектуры Pascal неизменно оставляет позади.

А вообще, среди поклонников видеокарт NVIDIA уже давно образовался фирменный спорт — приблизить с помощью аппаратной модификации GeForce к Quadro (например, GTX 680 в аналог Quadro K5000 по производительности), а любители игр, напротив, скрещивают ежа с ужом, «ковыряют» драйверы и заставляют профессиональные видеокарты работать быстрее в пострелушках/покатушках/бродилках. «Играть как задумано» такая деятельность не позволяет, но настырности энтузиастов можно только позавидовать.

В мобильных рабочих станцией почти у каждой видеокарты NVIDIA Quadro наблюдается забавная закономерность: всякий мобильный видеоускоритель NVIDIA Quadro равен игровой [1] GeForce классом ниже в геймерских задачах и на пару уровней более крутой игровой [1 + 2] GeForce в дисциплинах CAD.


Производительность мобильных NVIDIA Quadro в сравнении с аналогами GeForce (источник: msi.com)

Например, Quadro M2000M в играх показывает себя на уровне GeForce GTX 960M, но как только дело доходит до моделирования, «подпрыгивает» в результатах до GeForce GTX 980M. Примерно такое же соотношение справедливо и в случае с другими моделями Квадро: M5000M соревнуется с GTX 980M в играх, а M1000M соперничает с 950M в играх.


NVIDIA Quadro M6000 в сравнении с самыми быстрыми игровыми видеокартами
(источник: techgage.com

Детям мороженное, даме — цветы: приоритеты в корпоративной памяти и накопителях


Серверная оперативная память не совместима с материнскими платами в домашних ПК не потому, что кто-то так решил «назло» конечным покупателям. Просто серверная ОЗУ устроена чуть иначе — она содержит регистр между микросхемами и системным контроллером памяти для того, чтобы снизить электрическую нагрузку на контроллер и иметь возможность установить больше модулей в одном канале памяти.

Иными словами, дополнительные микросхемы и умение автоматически распознавать и исправлять ошибки очень повышает отказоустойчивость такого типа памяти, но и увеличивает её стоимость. Словом, не удивляйтесь, если обнаружите, что даже низкочастотные (по меркам стандарта DDR4) модули окажутся на 50% и более дороже, чем их «бытовые» аналоги — бесчеловечные требования в выносливости в круглосуточно включенных системах заметно видоизменили серверную ОЗУ. В повседневном использовании она не будет ни быстрее, ни эффективнее «гражданских» аналогов, поэтому за высокой производительностью стоит обращаться к геймерским комплектам — например, HyperX Savage, если вам нужна удобная в разгоне память для геймеров, и HyperX Predator, если хочется выжать из подсистемы ОЗУ максимум. Для штатных частот замечательно подходит бюджетный Kingston ValueRAM — надёжный, один раз установил и забыл.


Серверный процессор в домашнем ПК может пригодиться, а вот вместо регистровой памяти лучше приобрести стандартный комплект DDR3/DDR4

SSD корпоративного класса тоже претерпели «тюнинг» в сторону надёжности — в них, к примеру, есть возможность гибко управлять резервным объёмом под нужды контроллера. Чем больше объём — тем ниже износ ячеек и выше долговечность накопителя. И огромное количество алгоритмов, эффективных в тяжёлых условиях работы, особенно по части сохранности данных на случай, если накопитель выключится в аварийном режиме. Перенастроенная на минимальную задержку в режиме многопользовательского доступа прошивка и борьба за стабильную производительность даже при внештатно большом объёме операций записи и чтения. Такую нагрузку домашний компьютер не переживает, даже если «пытать» SSD торрентами. С другой стороны, рекордсменами в типовых операциях промышленные SSD тоже не являются — типовые SATA-накопители быстрее устареют «морально», с точки зрения объёма памяти, чем полностью исчерпают количество доступных для ячеек циклов перезаписи — проверенно длительным сравнительным тестом с участием моделей HyperX. А рекорды скорости при таком же уровне надёжности уже давно перешли к накопителям на базе интерфейса NVMe, которые реализованы в одном из новомодных форм-факторов «поверх» PCI-Express. В модельной линейке Kingston/HyperX «царём горы» был и остаётся Predator SSD PCI-E.


Выигрыш в долговечности при покупке SSD корпоративного класса не сравнится с радостью от быстродействия геймерского PCI-e накопителя

Если нельзя, но очень хочется — то можно


Железо корпоративного класса не настолько отличается от «гражданских» аналогов, чтобы признать его непригодным к работе в качестве домашнего ПК, просто всегда нужно исходить из того, стоит ли овчинка выделки. Потому что ситуация обстоит следующим образом:

• Покупать платформу, в которой используется регистровая память с коррекцией ошибок (ECC) для дома — плохая идея. Избыток долговечности не компенсирует дорогостоящие комплектующие и средний (в сравнении с геймерскими аналогами) уровень производительности не будут радовать, тем более, что и цены на серверную память заметно выше, чем на среднестатистический модуль DDR3/DDR4.

• Накопители корпоративного класса в домашнем компьютере нужны, если вы параноик, экстремально тревожитесь о сохранности данных в случае перебоев с электроэнергией и переживаете касательно надёжности современных SSD вообще. Накопители, ориентированные на организации, позволят вам «выкрутить на максимум» показатели надёжности, чтобы душа была спокойной.

• Серверный процессор для игр… любопытная и достаточно эффективная идея, но только лишь в том случае, когда речь идёт о более дешёвой (в сравнении с мейнстрим-аналогами) и, что главное, высокочастотной модели. Либо об апгрейде старого компьютера на серверный CPU «малой кровью», то есть, почти за бесценок. И да, в идеале платформа должна быть позаимствована у «обычной» Extreme-серии массовых процессоров.

• Профессиональные видеокарты отлично справляются не только с моделированием, но и с играми. Но следует помнить, что в мобильных рабочих станциях (с «задушенным» TDP) профессиональный видеоускоритель среднего класса сможет конкурировать в геймерских дисциплинах только с игровыми видеокартами бюджетного класса. А десктопные профессиональные видеокарты, в свою очередь, хоть и быстрые во всех сценариях работы, стоят заградительно дорого, и уж точно не годятся на роль эконом-варианта для «поработать и поиграть».

Как бы то ни было, на качественной и быстрой оперативной памяти экономить нельзя… Но сегодня — можно! Напоминаем, что с 2 по 20 февраля на все комплекты памяти HyperX Savage DDR4 и HyperX Predator DDR4 в Юлмарте действует скидка 10% по промокоду DDR4FEB. Памяти много не бывает, а производительной и крутой памяти для новых платформ ПК — тем более!



Для получения дополнительной информации о продукции Kingston и HyperX обращайтесь на официальный сайт компании. В выборе своего комплекта HyperX поможет страничка с наглядным пособием.

habr.com

Сервер и ПК – в чем разница?

Вместе со словом «компьютер» не зря часто употребляют «персональный». Это означает, что машина рассчитана на работу одного пользователя, независимо от места использования: дома, в офисе, на производстве. Видов персональных компьютеров множество. Чаще всего их классифицируют по признаку функциональности и специфики решаемых практических задач. Соответственно, и технические отличия диктуются предназначением ПК.

 

Например, рабочая станция должна обладать достаточной мощностью для быстрой и эффективной работы с емкими приложениями, а графическая – прежде всего, качественно воспроизводить «картинку», в том числе 3D изображения. Для офиса подойдет компьютер с минимальными возможностями, здесь важнее компактность и тихая работа. Современные игры, наоборот, требуют от компьютера большого объема памяти, мощной видеокарты, возможности подключения дополнительных мультимедийных устройств.
 

Но все перечисленные моменты касаются именно персональных устройств. Сервер же представляет собой компьютер, способный тем или иным образом обеспечить выполнение определенных задач для нескольких связанных с ним персональных устройств. В этом принципиальное отличие сервера от обычного ПК. Нередко сервер называют «выделенным компьютером», подчеркивая тем самым его роль относительно остальных аппаратных устройств в системе. Какие именно функции будет выполнять сервер, зависит от особенностей бизнес-процессов предприятия, его масштабов и используемого программного обеспечения. 
 

Разделение серверов на типы и классы отражает все многообразие выполняемых ими задач: почтовый сервер, принт-сервер, файл-сервер и другие, а также узкоспециализированные аппаратные решения. Не вдаваясь в технические особенности каждого вида, перечислим общие черты, наглядно показывающие отличие сервера от ПК.
 

1. Мощность – наиболее очевидная характеристика сервера. Количество процессоров и ядер в них, производительность жестких дисков, объем памяти и другие ресурсы определяют его мощность и скорость работы. Как и в любом компьютере, чем выше данный показатель у комплектующих и лучше их совместимость, тем быстрее работает сервер.
 

2. Надежность – пожалуй, самая важная характеристика серверов. Ведь все они обязаны обеспечить сохранность важной информации, а многие рассчитаны на бесперебойный отклик в режиме 24/7. Достигается надежность, с одной стороны, использованием комплектующих высокого качества и уровнем сборки (физическая надежность). С другой стороны – стабильностью программной составляющей сервера.
 

3. Масштабируемость – способность к увеличению производительности за счет расширения аппаратных или программных ресурсов. Соответственно различают масштабируемость аппаратную, которая достигается физическими средствами – увеличением количества процессоров, добавлением памяти и т.п. или заменой элементов на более мощные. Программная масштабируемость – это  отсутствие сбоев в работе и возможность прироста производительности через использование серверной операционной системы. Самая популярная ОС — MS Windows Server 2003/2008.
 

4. Управляемость – важный аспект, предусматривающий возможность контролировать работу сервера и диагностировать вероятные проблемы, а также при необходимости безболезненно перезагружать аппарат. Сегодня существуют специальные модули, позволяющие выполнять эти задачи удаленно, даже при отключенном сервере. Высоким уровнем управляемости славятся серверы SUN.

 

www.administrator-pro.ru

Серверный ПК или обычный — Androfon.ru

Сборка ПК на серверном процессоре.Сборка ПК на серверном процессоре.

Автор: Александр Мойсеенко / Опубликовано:30.10.2019 / Последнее обновление: 30.10.2019

Сборка компьютера начинается с выбора платформы – сокета, а так же подходящего под разъем процессора. При этом цена новых комплектующих вынуждает некоторых пользователей задуматься о покупке запчастей с вторичного рынка или обойтись частичным обновлением. Поэтому в качестве альтернативы пользователи всё больше отдают предпочтение списанным серверным процессорам Intel, что продаются по доступной цене на различных интернет площадках. Насколько оправдана такая сборка, а так же какие возможности предлагает владельцу, вы узнаете из данного материала.

Что такое серверный процессор, основные различия с бытовым ЦП

Серверные процессоры предназначены для работы в сервере. Внешний вид и конструкция аналогична решениям для массовых потребителей в рабочих станциях, домашних и офисных ПК. При этом для производства серверных процессоров используются строгие критерии отбора и тестирования, из расчета длительной работы под нагрузкой в режиме 24/7. Обычные процессоры для массового рынка в среднем работают до 14 часов в сутки с переменной нагрузкой.

Помимо круглосуточной эксплуатации важна и высокая стабильность. Поэтому серверные процессоры поддерживают работу с ECC оперативной памятью. В сравнении с обычной ОЗУ, в ECC имеется функция корректировки ошибок, что автоматически распознает и исправляет возникшие изменения битов памяти.

Двухпроцессорная материнская плата ASUS WS C621E SAGE на сокете Intel Socket P 3647.Двухпроцессорная материнская плата ASUS WS C621E SAGE на сокете Intel Socket P 3647.

Двухпроцессорная материнская плата ASUS WS C621E SAGE на сокете Intel Socket P 3647.

Для достижения высокой производительности серверные процессоры выпускаются в многоядерной конфигурации – 8, 12, 16 и т.д. А с учетом технологии Hyper Threading число дополнительных потоков увеличивается вдвое. Массовые потребители до появления AMD Ryzen довольствовались преимущественно 8-поточными ЦП. Кроме того для серверов выпускают материнские платы для установки сразу двух или четырех процессоров.

 

Почему популярны сборки на серверных процессорах

Покупка новых серверных процессоров за исключением крупных проектов лишена смысла. Стоимость нового ЦП обычно в 2-3 раза превышает цену аналога для массовых потребителей. Поэтому для сборки производительной и доступной системы рационально приобретать серверные процессоры с вторичного рынка.

Серверные процессоры рассчитаны на 3-5 лет работы в сервере. По окончанию эксплуатационного срока, ЦП заменяют новым или полностью обновляют конфигурацию. Обычно отработанные процессоры утилизируют, как и большинство других компонентов: оперативная память, HDD, материнские платы, платы для управления RAID массивами и т.д. При этом фактическую работоспособность комплектующие детали не теряют и способны продолжать работать в домашних сборках, в офисных ПК или рабочих станциях. Поэтому некоторые сотрудники дата центров или ответственные за утилизацию, часто перепродают списанные компоненты.

Интерес пользователей к списанным ЦП возник благодаря доступной цене. Покупка серверного процессора в Китае до 50% дешевле БУ потребительских процессоров на местных барахолках и торговых площадках. К примеру, на местных площадках Intel i7 2600 стоит от 88 USD, тогда как аналогичная по характеристикам модель Xeon E3 1240 – 47 USD. Из-за высокого спроса китайцы быстро подняли цену, но и с учетом наценки такая покупка обходилась дешевле местных БУ аналогов.

Серверный процессор Intel Xeon E3-1240 в потребительской системной плате Gigabyte.Серверный процессор Intel Xeon E3-1240 в потребительской системной плате Gigabyte.

Серверный процессор Intel Xeon E3-1240 в потребительской системной плате Gigabyte.

Помимо домашних сборок популярны конфигурации с серверными процессорами для построения рабочих станций. Рабочая станция представляет собой производительную систему для работы – рендер видео, расчет в конструкторских приложениях, проектирование и другие задачи, где важна высокая процессорная мощь. Только серверные процессоры способы предоставить высокую производительность благодаря многоядерной структуре, а так же возможности одновременной работы 2х процессоров.

Варианты сборки

Стоит выделить две вариации сборки ПК с серверным процессором:

  1. Смена только процессора.
  2. Сборка отдельной системы.

Вариант со сменой только процессора подойдет пользователям, что располагают готовым ПК, где используется маломощный ЦП. К примеру, в системе используется Celeron, Pentium или Core i3, а материнская плата поддерживает установку Core i7. Тогда рационально подобрать наиболее производительный серверный аналог для имеющейся материнской платы. При этом установка ЦП в потребительскую материнскую плату не позволит использовать оперативную память с коррекцией ошибок. С другой стороны позволит увеличить производительность системы при минимальных денежных вложениях.

При отсутствии готовой системы или наличия только части комплектующих компонентов, производится сборка новой системы. Предпочтительно собирать ПК на материнской плате серверного типа в сочетании с памятью ECC. Если для выбранного сокета нет доступных серверных материнок, остается только вариант сборки с использованием бытовой материнской платы. Стоимость сборки отдельной системы выше, чем замена только процессора. За то такой вариант позволяет собрать высокопроизводительный ПК.

Актуальные сокеты

Наиболее интересные предложения на рынке – вторичные процессоры производства Intel, поскольку до появления линейки Ryzen у AMD наблюдался определенный застой. Поэтому рассматривать серверные процессоры AMD не целесообразно, а поклонникам AMD стоит присмотреться к сокету AM4 и TR4. На Intel актуальные сокеты 1155, 2011 и 2011-3.

Сокет 1155 интересен только в плане обновления процессора при наличии готового ПК. Собирать систему с нуля не целесообразно, поскольку платформа морально устарела. В частности не поддерживается разгон частоты, некоторые современные инструкции, а максимальное число ядер/потоков – 4/8. При этом сборки на сокете 1155 остаются востребованными ввиду наличия комплектующих запчастей. А производительности хватает для большинства игр и повседневных задач.

Сокет 2011 предлагает больше производительности при сравнительной цене сборки на 1155. При этом у процессоров в сокете больше число ядер/потоков – 6/12, 8/16, 10/20 и 12/24. Так же некоторые модели поддерживают функцию разгона частоты. Из недостатков – высокий тепловой пакет многоядерных ЦП и соответствующее потребление энергии.

Сокет 2011-3 обновленная версия 2011. Среди главных отличий – поддержка оперативной памяти DDR4, новых инструкций, а максимальная конфигурация ядер/потоков – 22/44.

Узнать больше о серверных сборках и актуальных конфигурациях поможет ресурс xeon-e5450.

Преимущества и недостатки сборки ПК на серверном процессоре

Преимущества:
  • Доступная цена при сборке и обновлении ПК, с учетом использования вторичных процессоров.
  • Высокая производительность за счет использования многоядерного ЦП или при установке 2х процессоров.
  • Возможность использования оперативной памяти с коррекцией ошибок.
Недостатки:
  • Большой тепловой пакет у большинства многоядерных процессоров 130-140 Вт, соответственно высокое потребление энергии в работе.
  • Необходимость установки качественной системы охлаждения для отвода избыточного тепла.
  • Высокая стоимость многоядерных процессоров.
  • Возможны конфликты и сбои в работе оборудования.
  • Выработанный ресурс и отсутствие гарантии.
  • Отсутствие поддержки некоторых инструкций и разгон частоты.
  • Требуются дополнительные знания и информация в сборке и подборе конфигурации.
При использовании многоядерных серверных  процессоров рекомендуется использовать кулеры башенного типа или водяного охлаждения. При использовании многоядерных серверных  процессоров рекомендуется использовать кулеры башенного типа или водяного охлаждения.

При использовании многоядерных серверных процессоров рекомендуется использовать кулеры башенного типа или водяного охлаждения.

При сборке на сокете 1155 проблемы и сбои в работе отсутствуют. А вот на сборках 2011 и 2011-3 часто наблюдаются проблемы с режимом сна или неверным отображением информации датчиков температуры. Поскольку большинство системных плат выпускают китайские бренды PlexHD, Kukete и Huanan, что мало уделяют внимания оптимизации и устранению некоторых ошибок. Поэтому пользователям, что незнакомы со сборкой на серверных процессорах придется изучить некоторые особенности и хитрости.

Стоит ли собирать ПК на серверном процессоре

В сравнении с потребительскими сборками, рассчитанными на массовое использование, серверные ПК обеспечат выше производительность и многозадачность, в основном за счет увеличенного числа процессорных ядер. Такая мощь пригодится в специализированных задачах. А вот для игр лучше подойдут 6-8 ядерные процессоры, но с высокой тактовой частотой на ядро. Поскольку большинство игр не оптимизированы распараллеливать нагрузку на несколько ядер, а предпочитают нагружать 1-2 ядра с высокой тактовой частотой.

Что касается списанных серверных процессоров, сборка вполне оправдана для различных сценариев использования. Получится поиграть в большинство игр при 60 кадрах в секунду, а так же поработать. К примеру, сборка из 16 ГБ ECC DDR3 памяти, 8/16 ЦП Xeon E5 2689 и системной платы PLEXHD X79 обойдется в 180 USD. А это стоимость одного только процессора AMD Ryzen R7 2700, что в максимальном разгоне опережает Xeon E5 2689 в играх на 15-30 кадров.

Вывод

Серверные сборки превосходят потребительские ПК, установленные дома или в офисе, как в плане производительности, так и возможностей. При этом сборка нового серверного ПК не целесообразна только для игр и развлечений, ввиду высокой стоимости. А вот списанные серверные процессоры в новых материнских платах на сокете 2011 и 2011-3 – наиболее доступный вариант сборки недорого и производительного компьютера для игр и/или работы.

А как вы относитесь к серверным сборкам? Имеет ли смысл сэкономить и собирать серверный ПК или переплатить за новые и современные комплектующие? Поделитесь мнением в комментариях под статьей.

При использовании многоядерных серверных  процессоров рекомендуется использовать кулеры башенного типа или водяного охлаждения. Загрузка…

Поделиться:[addtoany]

androfon.ru

Какой сервер собрать для офиса в 15пк?Какое ПО использовать для резервирования?

Роутер — что нибудь из недорогих микротиков, если крутые навороты не нужны пойдет любой SOHO роутер.
Этого гарантированно хватит для такого офиса. Его задача раздавать интернет, если нужно держать VPN, раздавать адреса, работать DHCP сервером, обеспечивать защиту сети, и.т.д. Никакие файловые службы на него вешать не надо.

Сервер — зависит от задач. Для файлопомойки пойдет любая офисная машинка с дисками нужной емкости.
Если у вас 1с — тут уже надо смотреть. Какая архитектура — файловая или серверная, сколько активных пользователей, размер базы. В зависимости от этого требования могут отличаться на порядок, т.е в десятки раз.

Стабильность работы 24/7/365
обеспечивается на любом железе.
-Тишина работы ( серверной нет )
Просторный десктоп с большими и тихими вентиляторами.
-Уверенная пропускная способность, чтобы хватало для работы в 1с и не глючило
Недостаточно информации для ответа.
-Умение делать RAID
Такое умение есть у всех компьютеров на борту которых установлена ОС windows или linux.
-Какое железо подобрать?
Мало информации, нужно конкретизировать задачи, в частности по поводу 1с, так же непонятно будете работать в режиме рабочей группы или в домен всех загонять.
-Какое ПО использовать для Firewall и резервного копирования
Зависит от требований. Если ОС windows — отлично подходит встроенное резервное копирование. Файервол это задача роутера, а не сервера приложений.
-Как не потерять OEM лицензии windows на машинках (Реально ли делать полный бекап образа диска и потом его развернуть обратно?)
Делайте образы дисков — в любой момент вернете состояние диска с активированной виндой. Делается это либо встроенным ПО windows, хотя можно использовать и сторонние утилиты вроде акрониса. Только следует уточнить что так вы сохраните именно активацию виндовс, но никак не лицензии. Лицензии никакого отношения к вашему компьютеру не имеют и на нем не хранятся. Обычно они лежат в сейфе в кабинете юриста.

qna.habr.com

как выбрать и не ошибиться? / Galtsystems (ex. Сквадра Груп) corporate blog / Habr

В каждом сервере установлена материнская плата, а в каждой материнской плате установлен процессор. Центральное процессорное устройство (ЦПУ) определяет, каким количеством данных сервер может управлять одновременно и как он может обработать все эти данные.
Эта статья будет полезна всем будущим владельцам серверов, которые не знают, сервер с каким процессором выбрать.



Какие основные моменты необходимо рассмотреть при выборе процессора:
  • Цели дальнейшего использования.
  • Количество ядер.
  • Совместимость с другими компонентами.
  • Скорость ЦПУ.
  • Цена.

Но сначала давайте разберемся, чем отличаются процессоры для настольных ПК и серверов, и могут ли они заменить друг друга.

Процессоры для настольных компьютеров
Процессоры, применяемые в настольных компьютерах, были специально разработаны для этих задач. Хотя они в основном выполняют те же функции, что и серверные процессоры, отличия кроются в архитектуре. Например, одно из преимуществ таких процессоров – их легче разогнать.

Серверные процессоры
Процессоры для серверов спроектированы в первую очередь для обеспечения высокой надежности. Тестируют такие процессоры в стрессовых условиях при высоких температурах и высоких вычислительных нагрузках. Они могут работать на очень высоких частотах, обеспечивая качественную обработку массивных данных.

Чем отличаются серверные процессоры от десктоптных?

  • Высокий контроль качества. Серверные процессоры проходят через все виды тестирований в самых суровых условиях. В качестве аналога можно привести следующий пример: двигатель пассажирского самолета требует более тщательного тестирования, чем двигатель автомобиля. Несомненно, риск неисправности двигателя самолета выше.
  • Надежность. Серверные процессоры отличаются отказоустойчивостью. В критической ситуации серверы могут избежать выключения или перезагрузки (при 2-х процессорной конфигурации). Они рассчитаны на работу нон-стоп 24/7. Десктопные варианты больше предназначены для «бытовой» многозадачности.
  • Наличие самокорректирующей системы. Серверные ЦПУ имеют алгоритм, позволяющий корректировать ошибки памяти, которые могут влиять на стабильность оборудования. Эта технология называется «проверка и исправление ошибок» (ECC).

Теперь перейдем непосредственно к выбору процессора.

Основные критерии выбора процессора


» Ядра
Менее десяти лет назад все процессоры выпускались с одним ядром. Сейчас одноядерные процессоры стали исключением из-за повсеместной распространенности многоядерных процессоров. В последнее время даже софт разрабатывают таким образом, чтобы приложения могли задействовать многоядерную технологию. Существует большое количество вариантов для выбора – начиная от 2-х и заканчивая 22 ядрами.

Когда процессоры запускались на одном ядре, оно полностью отвечало за обработку данных, которые передавались на процессор. Чем больше ядер встроено в ЦПУ, тем больше они способны распределять его задачи. Это делает процессор быстрее и эффективнее. Очень важно понимать, что процессор отвечает только за исполнение задач, как и софт, работающий на нем. Всю основную работу выполняют ядра. Однако стоит учитывать, что если для корректной работы приложений используются 3 ядра из 8, то 5 ядер остаются незадействованными. Чтобы минимизировать затраты, стоит сопоставить системные требования с количеством ядер.

» Кэш
Кэш процессора можно сравнить с памятью компьютера.  По сути, это небольшое количество очень быстрой памяти, которая используется для временного хранения данных. Это позволяет компьютеру очень быстро восстанавливать файлы, находящиеся в кэш-памяти процессора. Чем больше кэш-память, тем оперативнее процессор выполняет возложенные на него задачи.

» Сокет
Совместимость сокетов – это первоочередная задача при выборе процессора. Сокет является средством связи между материнской платой и ЦПУ. Если вы уже купили материнку, проверьте, что установленный процессор совместим с ее сокетом. И наоборот, отдельно покупая процессоры, проверьте совместимость с материнкой. Это может пригодиться для дальнейшего апргрейда.

» Графический процессор (GPU)
Многие современные процессоры имеют встроенные графические процессоры, которые выполняют расчеты, относящиеся к графике. Если у процессора отсутствует встроенный GPU, сервер все равно сможет отображать графику (если установлена отдельная видеокарта или материнка позволяет запускать видео). Однако для работы софта и приложений, интенсивно нагруженных графикой, ЦПУ со встроенным GPU будет работать намного эффективнее.

» Частота
Частота ЦПУ, измеряемая герцами, это скорость, на которой он работает. Раньше было так: высокая частота = лучшая производительность. Эта формула более не действует. В некоторых случаях ЦПУ, работающий на низкой частоте, может в действительности работать лучше, чем процессор, обладающей высокой частотой. На это влияет архитектура процессора. Наравне с частотой очень важно обращать внимание на число команд процессора, выполняемых за цикл. Хотя частота по-прежнему является важным индикатором быстродействия процессора, теперь это не ключевой момент, влияющий на реальную скорость ЦПУ.

» Величина отвода тепловой мощности (TDP)
Процессоры генерируют тепло. Величина отвода тепловой мощности, назначенная для процессора, объясняет, сколько тепла процессор может выделять. Это напрямую будет влиять на тип охлаждения, необходимого для ЦПУ. Если процессор поставляется без системы охлаждения, или эта система не используется, необходимо продумать систему охлаждения для корректной работы сервера. Перегрев – основная опасность для серверных компонентов.

Какая из спецификаций подойдет для вашей компании?


Во время выбора процессора некоторые критерии будут иметь большее значение, чем остальные. Для того, чтобы облегчить задачу по выбору процессора, мы подготовили типовые варианты решений в зависимости от размера вашей компании.

Небольшая компания:

  1. Ядра. Для большинства задач подойдет сервер с 4-х ядерным процессором. Если перед вами стоят более требовательные задачи – необходимо работать с графическим дизайном, выясните, какое количество ядер необходимо для конкретного софта. Если необходимо 8 ядер, то лучше всего инвестировать деньги сразу в сервер на базе 8-ядерных процессоров.
  2. Память. Количество памяти, которое поддерживает сервер, тоже может играть свою роль. Материнская плата и тип операционной системы помогут определиться с необходимым объемом.
  3. Частота. Софт, с которым вы планируете работать, будет влиять на скорость ЦПУ. Например, постоянное использование программы Adobe CS 6 потребует процессор со скорость как минимум 2 Ггц.

Средние компании
  1. Цена. Большинство средних компаний должны придерживаться установленного бюджета, когда дело касается покупки оборудования. Цена относительно производительности процессора может стать ключевым фактором.
  2. Многопоточность. При выборе серверного процессора обязательно обратите внимание на технологию гиперпоточной обработки (Hyper-Threading). Эта технология обеспечивает более эффективное использование ресурсов процессора, позволяя выполнять несколько потоков на каждом ядре и повышает пропускную способность процессоров, улучшая общее быстродействие многопоточных приложений.

Корпоративные заказчики
  1. Ядра. При выборе ЦПУ стоит учитывать количество ядер. Необходимо ориентироваться на технические требования приложений. Например, если установлен 8-и ядерный процессор, но для приложения необходимо только 4 из них, то нет смысла переплачивать. Размер не всегда имеет значение.
  2. Частота. Здесь тоже стоит ориентироваться на софт – некоторым компаниям хватает 2 Ггц, а другим и 4 Ггц мало.
  3. TDP. Проверьте этот показатель перед покупкой процессоров. Тогда вы будете уверенным, что система охлаждения справится с выделением тепла.

Есть ли смысл переплачивать за производительность?


Мы составили сравнительный список процессоров, относительно аналогичных по характеристикам, и указали цены за серверы, на борту которых установлены нижеуказанные модели ЦПУ (цены взяты на Яндекс.Маркет и Сквадра Груп от 23.05.2016):
Процессоры Сквадра Груп
CPU Benchmark
Цена за сервер, ₽
Новые процессоры
CPU Benchmark
Цена за сервер, ₽
Intel Xeon E5530
(4 Core, 8M Cache, 2.40 GHz)
4621
18 000
Intel Core i5-2300
(4 Core, 6M Cache, up to 3.10 GHz)
5283
78 000
Intel Xeon E5620
(4 Core, 12M Cache, 2.40 GHz)
4903
21 800
Intel Core i7-870
(4 Core, 8M Cache, 2.93 GHz)
5487
85 000
Intel Xeon E5645
(6 Core, 12M Cache, 2.40 GHz)
6533
39 400
Intel Xeon E3-1225 v3
(4 Core, 8M Cache, 3.20 GHz)
7005
124 300
Intel Xeon X5650
(6 Core, 12M Cache, 2.66 GHz)
7601
45 400
Intel Xeon E5-2620 v2
(6 Core, 15M Cache, 2.10 GHz)
8689
195 000
Intel Xeon E5-2670 v1
(8 Core, 20M Cache, 2.60 GHz)
12497
77 900
Intel Xeon E5-2640 v3
(8 Core, 20M Cache, 2.60 GHz)
14055
375 000

Так выглядит наглядная диаграмма соотношения производительности процессоров и цен на б/у и новые серверы:
Очевидно, что цены на новые серверы значительно отличаются от б/у, хотя производительность процессоров примерно одинаковая.

Заключение


Итак, при выборе процессора определите для себя следующие вещи:
  1. Цель использования сервера.
  2. Технические характеристики приложений, для которых будет предназначен сервер.
  3. Совместимость с другими компонентами (память, ОС и т. д.).
  4. Размер компании.
  5. Цена

habr.com

история возникновения, определение, предъявляемые требования, описание основных подсистем.

Чтобы лучше понять, что такое современные серверы, кратко рассмотрим историю их возникновения. Изначально, вся электронная обработка данных проходила на мощных ЭВМ – мейнфреймах, у пользователей был лишь терминал для доступа к данным. Мейнфреймы (mainframe — основная стойка (англ.)) представляли собой мощные, универсальные ЭВМ для одновременного обслуживания нескольких тысяч пользователей. Главная особенность их архитектуры — сбалансированность, что достигалось с помощью дополнительного процессора на уровне канала, который синхронизируется с вычислительным процессором по прерываниям. Обращаясь к канальному процессору за данными, вычислительный процессор в это время переключался на расчеты для параллельных задач. Терминал представлял собой алфавитно-цифровой дисплей и клавиатуру, которые подключались к мейнфрейму. Мейнфреймы поставляли несколько компаний: Hitachi, Amdahl, IBM и др. Как правило, их продукция была несовместима между собой.

Компании были замкнуты на решения одного поставщика, который поставлял все аппаратное и программное обеспечение. Компьютерные системы были очень дорогими, а переход с одной системы на другую был очень болезненным. В 1971 г. компанией Intel был разработан первый микропроцессор (i4004), что сделало возможным появление персонального компьютера — IBM PC. С ростом мощности и количества ПК произошел постепенный переход от централизованной обработки информации к распределенной (на ПК). Терминалы стали замещаться ПК, а от мэйнфреймов постепенно отказались.

Однако с ростом количества ПК и их мощности, развитием локальных сетей, вновь возникла потребность в централизованном хранении и обработке данных.

Появилась необходимость в сервере для персональных компьютеров. Сервер — устройство в сети, предназначенное для обслуживания доступа к общим ресурсам (файлы, принтеры, базы данных, приложения и т. д.).

Изначально распространение получили файловые серверы, где пользователи хранили свои данные и обменивались ими. С ростом глобальной компьютерной сети Интернет возникло новое направление — телекоммуникационные серверы (веб серверы, ftp, доменных имен, почтовые). С развитием СУБД, в силу изменения формата хранения и доступа к данным, файловые серверы утратили свою популярность, и их во многом заменили серверы баз данных. Файловые серверы остаются и по сей день, но они приобрели второстепенное значение — их используют лишь для хранения пользовательских файлов и различных архивов. В последнее время выросла популярность терминальных серверов — ПК пользователей служат лишь терминалом для отображения и ввода данных, а все пользовательские задачи выполняются на сервере. Таким образом достигается значительная экономия на ПК (на роль терминала годятся даже маломощные компьютеры), снижаются затраты на установку и поддержку программного обеспечения, решаются вопросы конфиденциальности и сохранности данных.

Для снижения совокупной стоимости владения (TCO), куда входят затраты на оборудование, программное обеспечение и обслуживание техники, многие компании сегодня возвращаются к централизованной обработке данных. Но теперь нет замкнутости на одном поставщике аппаратного и программного обеспечения, на рынке есть широкий выбор решений от различных фирм.

Сервер стал критическим элементом в современной инфраструктуре обработки данных, отказ которого приводит к серьезным временным, а значит и финансовым потерям.

Простои сервера можно условно разделить на две категории: плановые и внеплановые. Плановые связаны с выполнением регламентных работ на сервере: профилактическое обслуживание, модернизация и т.д.

Используя сервер, собранный из настоящих серверных компонентов, можно сократить плановые и внеплановые простои. Например, при выходе из строя одного из вентиляторов, администратор может заменить его, не выключая сервер. То же самое можно проделать и с блоками питания, если они поддерживают резервирование, с жесткими дисками и картами расширения PCI-X и PCI Express.

Внеплановые простои возникают в случае отказа сервера. Причины отказа могут быть разнообразными, самые распространенные — перегрев компонентов из-за остановки вентиляторов или отказ дисковой подсистемы из-за выхода из строя одного или нескольких дисков. К отказам могут приводить и сбои программного обеспечения, вызванные некорректной конфигурацией последнего. До сих пор в России имеют место ситуации, когда сервер параллельно служит рабочей станцией системного администратора, что приводит к установке излишнего программного обеспечения, различным системным конфликтам, т. е. надежность системы катастрофически падает.

Причиной отказа может стать и умышленная удаленная атака на сервер с целью парализовать его работу. Такая атака может производиться как из локальной сети, так и из сети Интернет (если локальная сеть имеет выход в глобальную сеть).

В случае простоя основного рабочего сервера финансовые потери условно можно рассчитать следующим образом:
потери = количество пользователей работающих с сервером * средняя зарплата в час пользователя * количество часов.
Сюда же можно приплюсовать потери от несовершенных операций, пени, неустойки и т.д.

Наихудший вариант — простой, сопровождающийся потерей данных. Зачастую, данные могут стоить дороже, чем самый современный сервер. Чтобы предотвратить данную ситуацию, необходим постоянный бэкап данных на ленточные накопители или другие устройства хранения-CDRW, DVD-RW и др.

В 1995 г. компанией Intel, лидирующим поставщиком микропроцессоров, был разработан процессор Pentium Pro (150МГц, 512Кб кэш), позиционирующийся как серверный. Он отличался от десктопных аналогов большим кэшем и продвинутой архитектурой, частично заимствованной у процессоров с архитектурой RISC. В Pentium Pro Intel впервые включил технологию динамического исполнения (Dynamic Execution), то есть инструкции могут исполняться не только последовательно, но и параллельно с помощью предсказания ветвей кода и переупорядоченного исполнения инструкций. Тем самым значительно повысилась эффективность процессора — количество команд, выполняемых за такт.

Вторым нововведением стал большой встроенный кэш L2. Для серверных систем наличие большего кэша является очень важным. Процессоры всегда работают на частотах в несколько раз превышающих частоту памяти. Половина инструкций стандартных приложений представляет собой команды работы с памятью — загрузку и выгрузку данных (Load-Store). Работа с памятью происходит по следующей схеме: если данные не были найдены в кэше L1, то следует обращение к кэшу L2, на это уходит 9–16 процессорных циклов, если данных нет и в кэше L2, то на обращение к памяти уходит до 150 процессорных циклов, в течение которых процессор ждет данные. Большой кэш L2 повышает вероятность быстрого доступа к данным, следовательно, увеличивает эффективность работы процессора.

Можно говорить о том, что Intel впервые применяет и обкатывает свои новые продвинутые технологии именно на серверных процессорах, потом эти технологии постепенно распространяются и на десктопы. Это уже произошло с интегрированным кэшем L2, динамическим исполнением, многопоточностью (hyper-threading). На очереди 64 битная адресация памяти (ЕM64Т).

За Pentium Pro последовали другие серверные процессоры: в 1998 г. — Intel Pentium II Xeon (400–450МГц, 1-2Мб кэш), Pentium III Xeon (700–900Мгц, 1-2Мб кэш). В 2001 г. был выпущен серверный аналог Pentium 4, Хeon, который развивается и используется и в настоящее время.

Таким образом, Intel уже 9 лет разрабатывает серверные процессоры и материнские платы. С 1999 г. Intel, чтобы расширить свой серверный бизнес, начала разрабатывать и производить серверные корпуса, а в 2001 г. впервые самостоятельно разработала серверный чипсет — E7500. До этого Intel и другие производители серверных материнских плат использовали серверные чипсеты фирмы ServerWorks (отделение компании Broadcom). С появление чипсетов E7500 и E7501 Intel практически полностью вытеснила ServerWorks с рынка двухпроцессорных чипсетов. Сегодня чипсеты ServerWorks широко используются только в многопроцессорных системах на Xeon MP.

Современные чипсеты Intel условно можно разделить на серверные и десктопные. В серверных чипсетах шины ввода-вывода PCI-X напрямую соединены с MCH (Memory Controller Hub), в десктопных это всегда делается через южный мост (ICH-I/O controller HUB). В чипсетах для серверов начального уровня (E7210, 875P) гигабитный адаптер Ethernet напрямую подключен к MCH, чтобы сбалансировать нагрузку и разгрузить ICH.



Рисунок 1. Сравнение архитектуры чипсетов для двухпроцессорных серверов (E7500), однопроцессорных серверов начального уровня (E7210) и десктопных чипсетов Intel (I845).

К настоящему времени серверные решения от Intel достигли степени зрелости: появились общепринятые открытые стандарты на отдельные серверные подсистемы: IPMI (удаленное управление), SSI (блоки питания и корпуса), DMI (управление и инвентаризация системы).

Теперь рассмотрим основные требования, предъявляемые к серверу, сложившиеся на данный момент:

  1. Надежность
  2. Быстродействие
  3. Управляемость
  4. Расширяемость
1. Надежность

Благодаря чему в серверах достигается надежность:

  • Использование специальных серверных компонентов, которые проходят более тщательное тестирование.
  • Резервирование компонентов: дублированные блоки питания, вентиляторы, жесткие диски.
  • Память с контролем четности (ECC) позволяет автоматически исправлять однобитовые ошибки
  • Удаленное управление и диагностика сервера (возможность просмотра температуры, скорости вращения вентиляторов, оповещения о критических сбоях)
2. Быстродействие

На данный момент, быстродействие является одним из самых «скользких» серверных показателей. Сервера начального уровня по процессорной мощности могут не отличаться, а иногда даже уступать обычным ПК, так как для выполнения некоторых серверных задач не требуется большой вычислительной мощности.

Рассмотрим самые распространенные серверные роли и нагрузки на различные подсистемы в ходе их выполнения:

Типичные роли серверовДисковая системаПроцессорыПамятьШины ввода-вывода
Сервер баз данных (SQL)3333
Файл-сервер3123
Брандмауэр (фаервол), почтовый сервер1211
VPN сервер1211
Терминал-сервер3333
Web-сервер2332

Таблица 1. Условные уровни нагрузки на различные серверные подсистемы в зависимости от роли сервера. (1-наименьшая нагрузка, 3-наибольшая.)

Таким образом, мы можем выявить три серверных задачи, где процессорной мощности современного офисного компьютера может быть достаточно:

  • файл-серверы
  • файрволы
  • почтовые серверы
Но с ростом количества пользователей, и, соответственно, нагрузки, для выполнения данных задач может потребоваться полноценный сервер.

Посмотрим, что произойдет, если установить в качестве сервера баз данных мощный десктоп. Механизм работы сервера баз данных условно можно описать следующим образом: к серверу по сети поступил запрос, в оперативную память с накопителей подгружаются необходимые данные, следует их обработка. Измененные данные необходимо записать на накопители, сделать отметку в логе о совершенной транзакции и отдать по сети данные обратно. При большом количестве одновременных запросов критически важной становится возможность сервера выполнять несколько потоков приложений одновременно, быстрый доступ к данным (большое количество оперативной памяти) и быстрая и надежная дисковая подсистема.

Пропускная способность «десктопной» шины PCI — 133 Mб/c., что легко «съедается» устройствами ввода-вывода.

Гигабитная сетевая карта имеет максимальную пропускную способность в 125 Мб/c., соответственно, две гигабитных карты, работающие одновременно, дадут уже 250 Мб/c. Если сюда приплюсовать еще и трафик от винчестеров — в случае IDE до 40–60 Мб/c., SCSI до 60–70 Мб/c. Если используется RAID контроллер с несколькими винчестерами в массиве, то трафик по шине увеличится пропорционально их количеству. Причем сервер должен обслуживать весь этот трафик одновременно. Как мы уже выяснили ранее, десктопные чипсеты имеют одну общую шину ввода-вывода, таким образом, картам расширения приходится конкурировать за пропускную способность шины, которая становится «узким местом». В свою очередь для сервера характерно наличие нескольких независимых «широких» шин ввода-вывода, сейчас это PCI-X, в будущем PCI Express.

Итак, быстродействие в настоящем сервере обеспечивается следующим образом:

  • Использование двух и более процессоров
  • Наличие несколько независимых шин PCI-X или PCI Express
  • Возможность использования больших объемов оперативной памяти
3. Управляемость.
  • Возможность удаленно (по сети) получать информацию о температуре процессоров, материнской платы; скорости вращения вентиляторов.
  • Администратор может устанавливать различные варианты получения предупреждений (по электронной почте, на пейджер, SNMP Alerts), о событиях, происходящих на сервере- остановке вентиляторов, перегреве процессоров, вскрытии шасси и т.д.
  • Удаленное включение/выключение, перезагрузки сервера, просмотр журнала событий, диагностика, обновление микрокодов.
4. Расширяемость.
  • Возможность использования нескольких процессоров
  • Возможность установки большого количества модулей памяти
  • Несколько независимых шин: PCI, PCI-X для установки дополнительных карт расширения.

Так, мы можем убедиться, что для выполнения всех четырех требований необходим настоящий, полноценный сервер. Установка в качестве рабочего сервера мощного ПК дает мнимую первоначальную экономию, которая потом «съедается» расходами на его обслуживание и модернизацию.

 Персональный компьютерРабочая станцияСервер
1. Надежность
Резервирование узловнетдада
Использование памяти с ECCда (используется редко из-за дороговизны памяти)дада (всегда)
2. Быстродействие
Поддержка двух и более процессоровнетдада
Максимальный поддерживаемый обьем оперативной памяти4 Гб8 Гб8–16 Гб
Наличие независимых скоростных шин ввода-вывода1 слот PCI-Express для графических карт + PCIAGP + PCI-X + PCI Express + PCIНесколько независимых шин PCI-X+PCI-Express+PCI
3. Управляемость
Удаленная диагностикатемпература процессора, скорость вентиляторовтемпература процессора, скорость вентиляторовпросмотр журнала событий, датчиков температуры, вскрытия корпуса
Удаленное управлениенетнетвключение/выключение, перезагрузка
4. Расширяемость
Несколько независимых шин PCI/PCI-Xнетдада

Таблица 2. Сравнение возможностей ПК, рабочей станции и сервера

Из чего состоит современный сервер: описание основных компонентов и подсистем.

У пользователей часто возникает вопрос — почему серверы стоят гораздо дороже, чем обычные мощные компьютеры? В чем их отличие от офисных ПК и почему настоящие серверы лучше. Ответить на этот вопрос можно лишь описав основные компоненты, «кубики» из которых строится сервер. Попытаемся дать краткое описание основных серверных компонентов и подсистем.

Корпуса.

Существует два основных вида серверных корпусов: стоечные и пьедестальные. Пьедестальные корпуса (pedestal) — стандартные «башни», отличающиеся от корпусов ПК лишь размерами, более емкой корзиной для накопителей и более качественным охлаждением. На сегодняшний день пьедестальные корпуса теряют популярность, их место занимают стоечные корпуса (rackmount). Они предназначены для установки в 19-дюймовую телекоммуникационную стойку или шкаф. Как правило, стоечные корпуса комплектуются рельсами, позволяющими выдвигать серверы для проведения сервисных работ. Такие корпуса занимают меньше места и удобнее в обслуживании. Их высота измеряется в юнитах (U). Один юнит равен 44,5 мм. Самые распространенные размеры стоечных корпусов: 1U, 2U, 4U и 5U.

Блоки питания

Серверные компоненты (процессоры, жесткие диски, материнские платы и др.), в силу своей высокой производительности потребляют больше электроэнергии, чем их аналоги для офисных ПК. Следовательно, для серверов требуются более мощные и надежные источники питания. Серверные процессоры Xeon потребляют до 120 Вт, жесткие диски SCSI до 20 Вт, материнские платы до 40 Вт. Путем несложных подсчетов мы можем прийти к выводу, что минимальная мощность источника питания для однопроцессорных систем должна составлять 300 Вт, для двухпроцессорных — от 400 Вт и выше, в зависимости от конфигурации.

В целях повышения надежности в серверах зачастую используют источники питания с резервированием (redundant). В случае выхода из строя одного источника питания, в действие вступает дополнительный, при этом питание не теряется. Администратору на консоль поступает сообщение об отказе одного из источников, что дает ему возможность оперативно заменить неисправную часть и восстановить резервирование. Соответственно, в данном случае источники питания поддерживают возможность «горячей» замены, без выключения сервера.

Материнские платы

Форм-фактор

В серверных системах используются материнские платы двух форм-факторов: ATX(E-ATX) и SSI. ATX более старый и привычный стандарт, главным образом ориентированный на ПК. Сегодня на его базе создают лишь серверные платы начального уровня. SSI (Server System Infrastructure) — специальный стандарт на серверные компоненты (блоки питания и корпуса), активно продвигаемый Intel. Введение открытого стандарта SSI должно упростить создание новых серверных корпусов и блоков питания, тем самым повлечь за собой уменьшение издержек и конечной цены для пользователя.

Видимое отличие материнских плат двух стандартов заключается в разных разъемах питания: 20-контактный у ATX(E-ATX), и новый 24-контактный у SSI. Отличается также и размер платы — SSI это всегда 12″×13″, ATX- 12″×9,8″, E-ATX-12″×13″. В принципе возможно подключение SSI блока питания к ATX плате и наоборот, через специальные переходники, поскольку разъем SSI фактически представляет собой разъем ATX+дополнительные контакты для 3.3В и 5В.

Поддерживаемые шины ввода-вывода

Одним из факторов, влияющих на цену материнской платы, являются поддерживаемые ею шины. Для плат начального уровня (однопроцессорных) характерно наличие стандартной PCI шины, хотя с выходом нового чипсета Intel E7210, шина PCI-X впервые появилась и на однопроцессорных материнских платах. На более продвинутых (двухпроцессорных) платах существуют несколько независимых шин PCI-X. В будущем (конец 2004–2005 гг.) все серверные платы в обязательном порядке будут использовать новую последовательную шину PCI Express. Действительно, PCI Express несет много преимуществ:

  • Повышенная пропускная способность — 200 Мб/c на канал, сертифицированы 1, 2, 4, 8, 16 и 32× канальные варианты разъемов. Шина полнодуплексная, т.е. данные могут передаваться «туда» и «обратно» одновременно, пиковая скорость может достигать 6,4 Гб/c.
  • Поддержка режима «горячей» замены карт расширения
  • Заложены возможности контроля целостности передаваемых данных (CRC)
ШинаРазрядность в битахЧастотаСкорость передачи данныхПоддержка HotPlug
PCI 2.13233 Мгц132 Мб/снет
PCI 2.16433 Мгц264 Мб/снет
PCI 2.16466 Мгц512 Мб/снет
PCI-X64133 Мгц1 Гб/сда (необходим дополнительный Hot Plug Controller)
PCI-Express 2.5-80 ГГц0.5-16 Гб/сда (встроена в PCI Express Switch)

Таблица 3. Сравнительные характеристики шин передачи данных

Чипсет

Изначально, рынок серверных чипсетов безраздельно принадлежал компании ServerWorks. Но с выходом Intel Xeon и с выпуском чипсета E7500, лидерство на рынке чипсетов для двухпроцессорных плат перешло к Intel. На данный момент ServerWorks присутствует лишь на рынке 4-х процессорных серверов с чипсетом Grand Champion HE.

На данный момент на рынке двухпроцессорных систем присутствуют два чипсета от Intel: E7501 для серверного сегмента и E7505 для рабочих станций (поддерживает AGP Pro 8x). Анонсированы и скоро поступят в продажу платы на основе новых чипсетов Intel E7520 и E7320. Данные чипсеты поддерживают память DDR-2 (400 МГц) — пиковая пропускная способность увеличивается на 20% и достигает 6,4Гб/c, на 40% снижается энергопотребления по сравнению с памятью DDR. Чипсеты также поддерживают шину PCI Express.

Для построения однопроцессорных систем используются чипсеты Intel 875P и Intel E7210.

 ПроцессорFSBШиныТипы памяти
875PPentium 4800PCIDDR 266/333/400
E7210Pentium 4800PCI-X 64/66DDR 266/333/400
E7500Xeon400PCI, PCI-XDDR 200 ECC Registered
E7501Xeon533PCI, PCI-XDDR 266 ECC Registered
E7505Xeon533PCI, PCI-X, AGPDDR 266 ECC Registered
E7520Xeon800PCI-X, PCI-ExpressDDR2 400 ECC Registered
E7320Xeon800PCI-X, PCI-ExpressDDR2 400 ECC Registered

Таблица 4. Технические характеристики серверных чипсетов фирмы Intel

Управление

Возможность независимого от операционной системы удаленного мониторинга и управления является исключительно важной для серверов. На сегодняшний день возможно дистанционно (по сети) получать информацию о температуре процессоров, материнской платы; скорости вращения вентиляторов и др. параметрах сервера. Администратор может устанавливать различные варианты получения предупреждений (по E-mail, на Pager, SNMP Alerts), о событиях на сервере: остановке вентиляторов, перегреве процессоров, вскрытие шасси. Существует возможность удаленного включения/выключения, перезагрузки серверов. Причем эти функции доступны даже при выключенном сервере, если он подключен к локальной сети или специальной сети управления, и на него подается дежурное напряжение. В будущем, планируется введение дополнительных функций, например, системные администраторы получат возможность удаленно (по сети) получать доступ к экрану и консоли управления сервером, обновлять BIOS и др. функции.

Некоторые производители интегрируют функционал для удаленного управления на материнских платах (Intel). Другие компании придерживаются более гибкого подхода — функции управления реализуются докупаемой отдельно дочерней платой (Tyan). В будущем и Intel планирует перейти на подобную схему. Причем у Intel будут присутствовать различные виды дочерних плат, отличающихся поддерживаемым функционалом дистанционного управления.

Оперативная память

Для серверов характерна поддержка больших объемов памяти. Многие приложения (SQL-серверы, веб-серверы и др.) для ускорения операций подгружают максимальный объем данных в оперативную память. У файловых серверов в оперативной памяти размещается файловый кэш, ускоряющий доступ к данным пользователя. У терминал серверов на основе Windows на каждую пользовательскую сессию отводится как минимум 32 Мб оперативной памяти плюс 256 Mb на операционную систему. Нетрудно подсчитать, что для функционирования терминал-сервера на 50 пользователей необходимо, как минимум, 2 гигабайта памяти. Обычно на двухпроцессорных платах присутствуют от 4-х до 8 разъемов для модулей памяти. Соответственно, максимальный объем может достигать 16 Гб. Хотя на практике, использование более 4-х Гб памяти на 32-битных системах не оптимально. С помощью технологии Physical Address Extensions (PAE) в 32-битных системах можно использовать до 64 Гб памяти, но с потерями быстродействия.

Все серверные платы поддерживают память с контролем четности (ECC). Память с ECC позволяет исправлять одиночные битовые ошибки и информировать о двойных, тем самым, обеспечивая отказоустойчивость сервера. На двухпроцессорных серверах используется специальная регистровая память. Отличие от обычной состоит в том, что на ней присутствуют регистры (буферы) контролирующие распределение сигнала по всем чипам памяти. Соответственно, буферы увеличивают задержку работы с памятью, но увеличивают надежность доступа к памяти, что критично для серверов. Также, благодаря наличию регистров, чипсет может поддерживать большее количество слотов памяти. Таким образом, двухпроцессорные сервера используют регистровую память с контролем четности. В однопроцессорные сервера ставят обычную память с поддержкой ECC или без нее.

Процессоры

Для построения 32-битных однопроцессорных систем сегодня используется Intel Pentium 4, для двухпроцессорных — Xeon DP, для четырехпроцессорных и более — Xeon MP. Фактически Intel Xeon представляет собой Intel Pentium 4, но с включенным блоком многопроцессорности (SMP). Xeon DP на основе 130-нм технологии поддерживает 533 шину, кэш L2 512Кб и L3 1,2 Мб. Недавно появившийся Xeon DP на основе 90 нм. тех. процесса (Nocona) поддерживает 800 МГц шину, кэш L2 1 Мб. Xeon DP (Nocona) поддерживает технологию EM64T, одной из особенностей которой является режим 64-разрядной адресации, который упрощает работу с большими объемами оперативной памяти. В новом Хeon появилась расширенная технология SpeedStep, позволяющая динамически управлять мощностью и сокращать энергопотребление процессора.

Xeon MP отличается от Xeon DP большим встроенным кэшем L3 (до 4Мб), использованием более медленной 400МГц шины и поддержкой 4-x и более процессоров. У процессоров Xeon есть кэши трех уровней L1, L2 и L3. Кэши работают на частоте ядра, но имеют разную задержку работы (латентность): L1 — 2–9 процессорных циклов (в зависимости от типа данных), L2 — +7 циклов (9–16), L3 — +14 циклов (23–30). Фактически, по данным различных исследований, наличие кэша L3 заметно не повышает быстродействия системы на типичных задачах. Особенность кэша процессоров Xeon — инклюзивность, то есть содержимое кэша L1 содержится в L2 и L3, данные из L2 продублированы в L3, что уменьшает эффективную суммарную емкость кэша. Таким образом, для достижения наивысшей вычислительной производительности процессора в первую очередь стоит ориентироваться на частоту шины процессора и на размер кэша разных уровней (большой кэш L2 предпочтительней, чем дополнительный L3, из-за более низкой латентности).

Дисковая подсистема

Диски

На сегодняшний день на рынке представлены жесткие диски трех интерфейсов: Parallel ATA (IDE), Serial ATA (SATA), SCSI.

Parallel ATA (IDE) является основным интерфейсом для персональных компьютеров. К преимуществам данного интерфейса можно отнести низкую цену за мегабайт информации.

Serial ATA является наследником интерфейса PATA. В новом стандарте была расширена пропускная способность до 150 Мб/с, для подключения дисков используются новые плоские кабели. Стандарт SATA допускает «горячее» подключение накопителей, в нем заложен механизм оптимизации очереди команд внутри контроллера, что значительно ускоряет ввод-вывод. В отличие от интерфейса PATA, в стандарте SATA к одному каналу подключается только одно устройство. Интерфейсы SATA и PATA несовместимы физически, но сторонние фирмы разработали преобразователи интерфейсов.

Интерфейс SCSI традиционно использовался в серверных системах. К его неоспоримым преимуществам следует отнести возможность подсоединения до 15 устройств на один канал, высокую пропускную способность (до 320 Мб/с), технологии арбитража шины, снижающие нагрузку на процессор, оптимизация очереди команд. Данные особенности делают SCSI идеальным интерфейсом для задач, связанных с большим количеством операций ввода-вывода. Жесткие диски с интерфейсом SCSI, как правило, имеют большую скорость вращения шпинделя — 10000 или 15000 оборотов в минуту, что увеличивает скорость поиска и передачи данных. К минусам данного интерфейса можно отнести высокую стоимость хранения (жесткий диск SCSI в три-четыре раза дороже, чем накопители SATA или PATA той же емкости). Физический интерфейс SCSI дисков бывает двух видов: интерфейс SCA 80 контактов (поддерживается «горячая» замена) и 68-ми контактный интерфейс (без горячей замены).

RAID контроллеры

RAID контроллеры позволяют организовать из группы жестких дисков отказоустойчивый массив. Существуют различные уровни отказоустойчивости, но наибольшее распространение получили следующие:

  • Уровень 0 (striping) — блоки данных последовательно размещаются на нескольких дисках, достигается выигрыш в скорости, но без отказоустойчивости. То есть в случае отказа одного из винчестеров пользователь теряет всю информацию.
  • Уровень 1 (mirroring) — диски объединены в пару и являются точной копией друг друга, для данного уровня требуются как минимум два диска. Теряется 50% дискового пространства, но достигается отказоустойчивость
  • Уровень 5 (striping with parity) — на дисках размещаются блоки данных плюс контрольная сумма. Причем контрольная сумма оказывается «размазанной» по всем дискам массива. В случае отказа одного из дисков, данные восстанавливаются на основе контрольной суммы на диск замены (hot spare). Для построения массива уровня 5 требуется как минимум три диска. Под контрольные суммы используется дисковое пространство, эквивалентное объему одного из накопителей (в случае n накопителей, суммарный объем дискового пространства равен n-1).
  • Уровень 0+1 или 10 (mirroring+striping) — зеркалирование+последовательная блочная запись. Представляет собой две группы зеркальных дисков, запись на которые ведется последовательно блоками. Необходимо, по меньшей мере, 4 диска. Потери дискового пространства 50%. Уровень 10 комбинирует скорость и надежность. Такой массив может продолжать функционирование при отказе половины дисков. Так как контроллеру не надо вычислять контрольные суммы, запись на диски происходит значительно быстрее, чем при уровне 5.

Таким образом, уровень 0 чаще всего используют там, где необходима высокая скорость данных, а сохранность данных неважна, например, нелинейный монтаж видео. Уровень 1 используется там, где требуется сохранить данные без использования сложных аппаратных систем. Как правило, уровень 0 и 1, поддерживают все, даже самые дешевые RAID контроллеры, в том числе и интегрированные на материнской плате. Уровень 5 представляется оптимальным по соотношению надежность/потери дискового пространства. Но для его реализации требуется полноценный RAID контроллер с аппаратным ускорением подсчета контрольных сумм. В силу необходимости подсчета контрольных сумм, данный уровень проигрывает по скорости записи уровню 0+1 (10). Уровень 10 используют там, где нужна высокая надежность и скорость чтения/записи, а потери дискового пространства не являются критичными.

RAID контроллеры различаются по типу используемой шины. Как правило, серьезные решения ориентированы на шину PCI-X, как самую быстродействующую на сегодняшний момент. На платах полноценных RAID контроллеров дополнительно размещают кэш-память; есть варианты с интегрированной и расширяемой памятью. Объем кэш-памяти влияет на производительность массива, но эта зависимость не является линейной.

Существует два режима работы кэша RAID контроллера: Write Through (сквозная запись) и Write Back (обратная). При первом режиме контроллер не дает подтверждения записи, пока данные не попали на диски, при втором достаточно того, чтобы данные попали в кэш. Соответственно, второй режим значительно ускоряет операции записи, но существует опасность потери данных при сбое по питанию. Чтобы решить данную проблему некоторые модели RAID контроллеров, как правило, двухканальные, оснащают еще и встроенной батареей (BBU- Battery Backup Unit). В случае сбоя по питанию или аппаратной перезагрузки, RAID контроллер с батареей успевает сбросить данные из кэша на диски.

Существуют и дешевые RAID-решения, например, Zero Channel Raid (ZCR). RAID контроллер данного типа представляет собой карту расширения, которая преобразует встроенные SCSI каналы на материнской плате в каналы RAID. Как правило, ZCR платы не содержат кэша, в них установлены маломощные процессоры. Использование таких систем оправдано лишь для создания массивов уровня 0 и 1.

Также возможно создание RAID-массива без специального RAID-контроллера, программным путем. Многие современные операционные системы поддерживают такую функцию (Windows 2000 Server, Windows 2003 Server, Redhat Linux 9 и т.д.). Однако скорость работы данного массива будет существенно ниже, чем у аппаратного, поскольку центральный процессор будет загружен в большей степени, особенно это будет заметно при уровне-5. Но главной проблемой является низкая надежность подобного решения – при сбое по питанию часть данных массива неизбежно будет потеряна.

Вместо выводов

Таким образом, сервер представляет собой сложный комплекс различных подсистем. При конфигурировании сервера необходимо отталкиваться от той задачи, для которой он предназначен. При различных серверных ролях нагрузка на серверные подсистемы меняется. Важно найти оптимальное решение, а для этого необходимо произвести расчет будущей нагрузки на сервер. Это можно сделать самостоятельно или с помощью технических специалистов компьютерных фирм, имеющих опыт в проектировании серверных систем.

 

www.ixbt.com

Выбор игрового компьютера/сервера (Intel/Nvidia) / Sandbox / Habr

Ниже представлена статья, содержащая азы выбора домашнего (но мощного) сервера, а потом дополнил её и игровым вариантом.
Операционная система

Битность — только x64, абсолютно не имеет смысла покупать игровому компьютеру меньше восьми гигабайт памяти, а серверу меньше четырёх.

Игровой компьютер:

Windows 7 — предыдущие версии не поддерживают новый DirectX.

Редакция — домашняя расширенная, для дома не нужно ничего больше. Более того, что-то большее будет кушать ресурсы, потенциально генерировать ошибки и при этом лежать балластом.

Сервер:

Linux и только он. Серверный Windows это дополнительные траты во всём — стабильности, ресурсах, удобстве.

Я не люблю настольный Linux — с графической оболочкой. Но для сервера это семейство операционных систем идеально. Хотя у некоторых игр серверы под Линукс появляются не сразу или вообще никогда. Но это игры совсем мелкие и скорбные или вообще заброшенные своими разработчиками. Так что на них внимания можно не обращать.

На мой взгляд лучший выбор для домашнего сервера — Debian/testing — ничего лишнего, новые пакеты и высокая стабильность.

Интернет

Для игр в целом важна не только ширина канала, но в большей степени задержка (пинг) и потери пакетов. В сети существует немало сервисов для проверки своего соединения, например и .

Игровой компьютер: От двух мегабит.

Сервер: От 10/10 мегабит. Помимо этого придётся раскошелиться на внешний и статический IP (или хотя бы на красивый домен и настроить для него динамический DNS).

Железо

Порядок выбора компонентов не случаен, это оптимальная последовательность.

Игровой компьютер: Халявы не будет, игровой компьютер должен быть производительным. Иначе это не игровой компьютер, а говно какое то. Бюджет ~30-40к.

Сервер: Любая рухлядь тянет большинство задач — веб-сервер, файловый сервер для домашней локальной сети, сервер не самой прожорливой и не самой новой игры. Добросервер при конфигурации E5300+2gb расходовал далеко не все ресурсы:

Однако мощный сервер потребуется для любого более или менее серьёзного хостинга игровых серверов. Бюджет ~20-25к.

Процессор

Core i5-2500 — идеален по соотношению цены / качества, лучше и дороже только семейство i7, но рост цены явно опережает производительность:

Core i5-2500 хорош и для сервера и для игровой машины (хотя серверу вполне может хватить и Core i3, но разница в цене не так уж и велика).

*Если вы планируете разгонять процессор — вам нужна редакция с индексом K, Core i5-2500K, например.

*Откажитесь от коробочных версий. Там не будет ни фигурок Гордона Мура, ни мандаринов, ни эльфиек в бронелифчиках. Вообще ничего клёвого, только наиомерзительнейший кулер.

Видеокарта

Игровой компьютер: Самый важный и дорогой компонент. GTX570 от Gigabyte стала моим выбором, у неё много плюсов, но решающий — гарантия на три года.

Если вам нужен более производительный вариант (разрешение вашего экрана больше 1920*1200) — интересным решением выглядит SLI из двух GTX560, суммарно они стоят даже дешевле GTX580, но при этом производительнее процентов на 20. С другой стороны, у комбинации нескольких карточек тоже есть мелкие минусы — они не всегда производительнее, требует больше места, больше шумит, больше вероятность что видеосистема сломается.

Да, купив сейчас две GTX560, вы потенциально сможете не менять их дольше, но когда вам придётся это сделать — это будет весьма болезненно для вашего кошелька, придётся менять сразу обе карточки. А выбравший GTX580 к тому времени сможет купить вторую GTX580 гораздо, гораздо дешевле первой.

Поэтому я думаю что не стоит собирать SLI сразу, лучше взять одну GTX560/570/580 (зависит от разрешения вашего монитора), дождаться когда она подешевеет, а игры начнут требовать ещё больше ресурсов, и купить ей пару.

Сервер: А знаете ли вы, что внутри всех процессоров Core i3/i5/i7 живёт интегрированное видео?

Оперативная память

В моём варианте у материнской платы 4 слота памяти и поддержка двухканального режима (что-то более крутое стоит сильно дороже). Поддержка двухканального режима означает, что две планки будут быстрее, чем одна.
Но ошибкой будет думать, что четыре планки будут быстрее двух — у материнской платы магическим образом поддержка четырёхканального режима не появится. Этот вариант не даст производительности в скорости, но займёт все слоты и затруднит апгрейд.
Что же с характеристиками? Советую 1333MHz CL9 для сервера и 1600MHz CL9 для игрового компьютера, разница с более быстрой памятью призрачна, лучше вложить деньги в видеокарту или процессор:


Игровой компьютер: 2x KHX1600C9D3/4G. У вас 8 гигабайт оперативной памяти, можно выключить файл подкачки. И помимо небольшого прироста производительности небольшой бонус получит и SSD накопитель.
Сервер: 2x Kingston KVR1333D3N9/4G — количество планок зависит от ваших потребностей. Одной для начала более чем хватит. Я выбрал две, но я точно знаю, зачем.
Например Minecraft, жрёт память совсем уж горячо и дерзко — 2gb на 20 слотов. Правда это в большей степени «заслуга» Нотча, чем вина слабого железа. Поэтому если планируется хостить больше одного игрового сервера — железо всё же должно быть соответствующим.

Корпус

Для меня выбор корпуса был самым настоящим мучением. Если вкратце, то существуют четыре варианта. И ни одного козырного.
1) Для экономных — дешёвый тазик от IN WIN, вроде IN WIN BL640 300W Black/silver. Должен сказать что я всячески пытаюсь избегать покупки корпусов со встроенными блоками питания. Непригодны для 24/7, а значит и для сервера.
2) Для эстетов — просто ищите красивый и качественный корпус, а потом читаете его обзоры, если не нравится — повторяете заново. Кирпич дороги моего выбора — этого цвета: SilverStone LC13B-E Black (Full Desktop) для сервера и Hiper Osiris (Midi Tower) для настольного.
3) Сбалансированный — выбираете аккуратный корпус в формате miditower (именно этот вариант вылизан индустрией, а поэтому неплохие варианты можно найти не очень дорого). Мне очень не хотелось покупать башню для сервера, поэтому я вернулся к предыдущему пункту.
4) Жадные дети Комбинированный — ищите пункт 2 или 3 в б/у варианте. Молоток и Комок в помощь. Хорошие корпуса не стареют, а если повезёт можно поймать отличный улов.
Блок питания

1. Вентилятор должен быть не меньше 120мм.

2. Не меньше двух линий по 12V для блока питания мощнее 400W.

3. Блок питания может быть модульным — лишние кабели отстёгиваются. Я не советую брать такие, они дороже, а промежуточные разъёмы всегда зло. Но если ваша любовь — крохотные милые девочки корпуса, то модульный блок и стоит рассматривать как возможный.

4. Кабели могут быть коротковаты — читайте отзывы о нужной модели. Удлинители стоят недорого и поэтому их лучше купить сразу.

5. Разъём питания для процессора на материнской плате может быть четырёх или восьми контактным (пиновым). Новая материнская плата — второй вариант. Если вы не планируете разгонять процессор или покупать i7, то можно покупать блок питания и с 4-мя контактами на процессор. В чём же разница? Восьмипиновый блок — распараллеленый четырёхпиновый, он даёт ровно столько, сколько и обычный, просто меньше греется.

6. Если вы берёте миниатюрный корпус — убедитесь что выбранный БП в него влезает.

Отличный баланс между ценой и качеством — блоки от FSP Group

Игровой компьютер: 850W сможет выдержать две GTX570 (одну сейчас, и одну потом — об этом выше), если вы помимо этого планируете разгон — придётся покупать блок на (внимание, барабаны!) тысячу ватт.

Сервер: 300/400W. Я остановился на ATX-400PNF 400W, он чуточку мощнее чем нужно, но но не особо дороже более слабых вариантов. Единственный его недостаток — несколько коротковатый кабель питания для процессора (4pin), сразу покупайте удлинитель. Если ваш сервер будет воткнут в ИБП, то вам нужен блок питания с высоким кпд, иначе он будет слишком много кушать.

Материнская плата

Сокет уже выбран вместе с процессором — LGA1155

Далее нужно выбрать чипсет, из доступных H67, P67, Z68.

1. H67 — когда встроенная в процессор видеокарта работает — разгон невозможен.
2. P67 — встроенное видео отключено в принципе, разгон возможен.
3. Z68 — и встроенное видео и разгон, но за большую цену.

От 4-ёх слотов памяти. Два слота сгодятся, только если вам категорически не нужен апгрейд. Не лишней будет поддержка USB/SATA 3. В качестве форм-фактора советую стандартные mATX или ATX, зависит от вашего корпуса. Из производителей — ASUS и GIGABYTE.

Игровой компьютер: Только P67.

Сервер: Я выбрал H67 — не планирую разгонять сервер, работающий 24/7, и очень не хочу покупать ему отдельную видеокарту.

Под эти условия замечательно подходят GIGABYTE GA-H67MA-USB3-B3 или GIGABYTE GA-H67A-USB3-B3.

Сеть.

Игровой компьютер: Всё, что вам нужно, уже есть в материнской плате.

Сервер: Если вы хотите использовать ваш сервер и как роутер (а вы наверняка этого хотите), то вам потребуется вторая сетевая карточка.

Поэтому нужно либо брать материнскую плату с двумя встроенными, либо покупать дополнительную отдельно.

Второй вариант позволяет существенно сэкономить, поэтому плату с двумя портами я могу советовать только в одном случае — вы хотите втиснуть материнскую плату в настолько тонкий корпус, что в него вообще нельзя ставить карты расширений.

Если корпус планируется просто тонким, то карта нужна низкопрофильная. Если бы у меня не было старой карточки от прежнего Добросервера, я бы выбрал Intel EXPI9301CT.

Жёсткие диски / Твердотельные накопители

Игровой компьютер: Лучшим по производительности/цене будет дуэт из быстрого SSD для системы и объёмного HDD для файлов. Ничто так не ускоряет обычную работу в системе, как SSD. Но за эту скорость нужно платить.

Сервер: После покупки в десктоп SSD у меня освободился WD1500HLFS и пока это единственный диск в сервере. Как вы уже поняли, мне нравится Western Digital.

Вообще, делать из домашнего сервера файловый имеет смысл только если у вас много устройств, которые с пользой смогут использовать эти самые файлы. У меня один настольный компьютер и я предпочитаю хранить все файлы именно на нём.

Тем не менее на сервере лучше держать два физических винта — системный делает бэкапы на хранилище. Если умирает системный — у вас есть бэкап, если умирает хранилище — вы просто покупаете новый амбар.

Заключение

Что ещё можно посоветовать? После того как определитесь с железом — можно спросить уточняющего совета на ixbt.com и на overclockers.ru.

habr.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *