Расходомер представляет собой прибор для измерения количества израсходованного (пройденного через трубопровод) рабочего вещества, жидкости или газа. Поскольку сжимаемые и несжимаемые вещества имеют свою специфику измерения, то и устройства в этом сегменте различаются по принципам действия. Каждая категория рассчитана на работу в среде с определенными эксплуатационными характеристиками, отличается особыми параметрами, имеет свои преимущества и недостатки.
Электромагнитные расходомеры
В основе таких приборов – закон Фарадея (электромагнитной индукции). Электродвижущая сила формируется под воздействием воды или другой проводящей жидкости, проходящей через магнитное поле. Получается, что жидкость течет между полюсами магнита, создавая ЭДС, а прибор фиксирует напряжение между 2 электродами, тем самым измеряя объем потока. Этот прибор работает с минимальными погрешностями при условии транспортировки очищенных жидкостей и никак не тормозит поток.
Преимущества электромагнитных расходомеров
- В поперечном сечении нет движущихся и неподвижных деталей, что позволяет сохранить скорость транспортировки жидкости.
- Измерения можно производить в большом динамическом диапазоне.
Недостатки
- Если в жидкости будут магнитные и токопроводящие осадки, загрязнения, то прибор будет работать с искажениями.
Ультразвуковые расходомеры
Расходомеры этого типа дополнены передатчиками УЗ-сигналов. Скорость прохождения сигнала от передатчика до приемника будет меняться каждый раз при движении жидкости. Если ультразвуковой сигнал идет по направления потока, то время уменьшается, если против – увеличивается. По разности времени прохождения сигнала по потоку и против него и рассчитывается объемный расход жидкости. Как правило, такие устройства комплектуются аналоговым выходом и микропроцессорным блоком управления, а все отображаемые данные выводятся на LED-дисплей.
Достоинства ультразвуковых расходомеров
- Устойчивость к вибрациям и ударам.
- Стабильный долговечный корпус.
- Подходят для нефтеперерабатывающей промышленности и систем охлаждения.
- Выполняют замеры расхода воды и жидкостей, подобных воде по физическим свойствам.
- Работают в среднем динамическом диапазоне измерений.
- Могут монтироваться на трубопроводы больших диаметров.
Недостатки
- Повышенная чувствительность к вибрациям.
- Восприимчивость к осадкам, поглощающим либо отражающим ультразвук.
- Чувствительность к перекосам потока.
Тахометрические расходомеры
В расходомерах тахометрического типа основным измерительным элементом служит крыльчатка или турбина (располагаются перпендикулярно или параллельно проходящему потоку соответственно). В процессе замеряются скорость вращения и количество оборотов, сделанных в потоке.
Преимущества
- Подходят для измерения расхода жидкости, пара и газа.
- Простые и дешевые модели.
- Легко монтируются на трубопроводы малых диаметров и часто используются в бытовых условиях.
- Работают без источника питания, электроподключение не требуется.
Недостатки
- Для трубопровода большого диаметра (то есть в промышленном учете) тахометрические расходомеры будут слишком дорогими из-за повышенной металлоемкости, а также чересчур громоздкими.
- Создают гидравлическое сопротивление потоку и в случае с большими диаметрами могут стать причиной «блокировки» или выйти из строя из-за механических поломок.
- Невысокая надежность для промышленных измерений, малый динамический диапазон.
- Недостаточная точность учета: на результаты влияют примеси и посторонние предметы в потоке.
- Срок эксплуатации недостаточно высокий: подходит для бытовых условий, но не для промышленности.
Кориолисовы расходомеры
В основе действия – эффект Кориолиса: U-образные трубки подвергаются колебаниям при движении, а вибрационные колебания, в свою очередь, вызывают закручивание вещества. Величина сдвига фаз зависит от массового расхода жидкости или пара. Расход измеряется с учетом образуемого угла закручивания. Чаще всего такие расходомеры применяются для жидкостных сред, в том числе для красок, лаков, жидких полимеров.
Преимущества
- Массовый расход измеряется напрямую.
- Осадки или загрязнения, растворенные в жидкости, не влияют на результаты измерений.
- Препятствий во внутреннем сечении нет, система работает стабильно.
- Подходят для измерения всех типов жидкости, вне зависимости от их электрической проводимости.
Недостатки
- Дороговизна, сложные технологические компоненты.
- Необходимость высокоточного монтажа.
- Точность проведения замеров может изменяться при сильных вибрациях.
Вихревые расходомеры
В таких приборах проводится измерение частоты колебаний, возникающих в потоке газа или жидкости в момент обхождения препятствий. Обтекание приводит к образованию вихрей (собственно, поэтому этот тип устройств и получил свое название), а величина изменения завихрений позволяет вычислить силу потока.
Преимущества
- Подходят для измерения расхода газов, технического воздуха.
- Движущихся частей в конструкции нет.
Недостатки
- В сечении есть механические препятствия, мешающие движению среды.
- При загрязнении тела обтекания точность измерения существенно снижается.
- Прибор чувствителен к изменениям температуры.
- Возникновение вибраций влияет на результаты.
- Измерения возможны в малом динамическом диапазоне.
Вихревые расходомеры измеряют частоту колебаний, которые возникают в потоке жидкости или газа, когда они обтекают препятствия. При обтекании препятствий образуется вихрь, от которого приборы и получили свое название.
Расходомеры перепада давления
В основе принципа действия таких приборов – измерение перепада давления, возникающего в момент прохождения жидкостного или газового потока через сужающееся приспособления (шайбу, сопло). В этом месте меняется скорость потока, а давление возрастает. Замеры в точке прохождения препятствия производятся с использованием дифференциального датчика давления.
Преимущества
- Движущиеся части в приборе отсутствуют.
Недостатки
- Измерения возможны в малом динамическом диапазоне.
- Любые осадки на сужающем устройстве приводят к значительным погрешностям.
- Механические препятствия в сечении снижают надежность конструкции.
Эти шесть вариантов считаются основными типами расходомеров для измерения объемов жидкостей и газообразных сред, воздух и воды.
В компании Измеркон предлагается широкий выбор промышленных расходомеров воздуха и сжатых газов, в том числе и с цифровым интерфейсом. Вы можете подобрать подходящую модель, ориентируясь на описание или проконсультировавшись с менеджерами. Наша компания из Санкт-Петербурга обеспечивает отправку измерительных приборов по всей России.
Вопрос ответ
Вопрос: Для чего нужны расходомеры?
Исходя из названия уже можно сделать вывод что расходомерами называют устройства, предназначенные для измерения расхода потока жидкости или газа. Расходомеры применяются во всех отраслях промышленности, а также ЖКХ и бытовом секторе.
Вот некоторые примеры того, для чего нужны расходомеры:
— Чтобы определить сколько газа поставила Россия в Европу
— Чтобы понять сколько бензина залил в бензобак Вашего автомобиля заправщик
— Чтобы определить количество стоков поступающих на очистные сооружения
— Чтобы определить расход горячей и холодной воды в квартире
— Чтобы отслеживать и контролировать необходимое количество поступающего потока для определенного технологического процесса.
Вопрос: Существует множество различных типов расходомеров. В чем их особенности?
Особенности каждого типа расходомеров продиктованы в основном областью его применения и конкретными требованиями той системы в которой применяется расходомер.
Так например:
Электромагнитные расходомеры используются для измерения среднего объемного расхода различных жидкостей, способных проводить электричество. Сфера его применения достаточно обширна. Это газо- и нефтеперерабатывающая промышленность, цветная и черная металлургия, химическая сфера, пищевая, целлюлозно-бумажная промышленность, эксплуатация в составе различных измерительных систем, комплексов и др.
Ультразвуковые расходомеры применяют для определения расхода жидкости без непосредственного контакта с измеряемой средой, посредством специальных накладных датчиков. Область применения прибора самая широкая — начиная с металлургической, нефтедобывающей, химической, пищевой и другой промышленности, и заканчивая применением на энергетических объектах и в ЖКХ.
Принцип работы вихревых расходомеров основан на непрерывном замере объемного расхода определенных жидкостей и газов путем контакта стержня расходомера с измеряемой средой. При помощи данного типа расходомера осуществляется контроль различных технологических процессов на производстве. Область применения: промышленное производство различного направления, водоснабжение.
Каждый типа расходомеров имеет свои уникальные особенности и применения. Более подробно с различными типами расходомеров Вы можете ознакомиться на соответствующем разделе нашего сайта «Типы расходомеров»
Вопрос: Как правильно выбрать нужный расходомер?
Можно самостоятельно разобраться в данном вопросе, изучить типы расходомеров, их характеристики и особенности применения используя материалы представленные на нашем сайте.
Однако самый простой способ – это оставить заявку заполнив форму в разделе «Обратная связь» или отправить запрос по почте project@rashodomery.pro
Вопрос: Достаточно ли знать расход жидкости только у конечного потребителя? Почему так важно знать точный расход на выходе из насосной станции?
Для продажи конечному покупателю определённого объема перекачиваемой среды действительно достаточно знать только расход жидкости, потребляемый клиентом на границе раздела. Однако в таком случае невозможно будет диагностировать наличия утечек, а также несанкционированного отбора жидкости. Для этих целей помимо расходомеров на границе раздела зон ответственности с покупателем, расходомеры необходимо также устанавливать непосредственно на выходе из насосной станции. Приборы учета установленные сразу после насоса позволяют определить четкую картину гидравлической сети и оптимально подобрать эффективное насосное оборудование для обеспечение требуемых режимов работы.
Расходомеры делятся на множество типов, по принципу работы. Существуют механические расходомеры (сюда относятся ролико-лопастные и шестеренчатые), перепадомеры, рычажно-маятниковые, ультразвуковые (характерны высокой точностью, особенно ультразвуковой расходомер жидкости), электромагнитные, вихревые, кориолисовые, тепловые и т.д. Не все эти типы приборов одинаково хорошо подходят для разных типов веществ, и большинство из них ориентированно исключительно на измерение расхода жидкостей, причем не выходящих за определенные температурные рамки.
Точность измерений ухудшается из-за трения механических элементов расходомеров и гидравлического сопротивления, но этих недостатков полностью лишены ультразвуковые расходомеры. Еще с 60-х годов прошлого века производители ультразвуковых расходомеров начали выпускать свои высокоточные приборы, которые сразу получили широчайшее распространение. Высокое быстродействие и защита от любых помех делают их использование оптимальным и в промышленности, и в химии, и во многих других отраслях. Ультразвук идеален для учета и контролирования расходов воды, теплоносителей, горюче-смазочных материалов, и любых других веществ, в том числе и сыпучих. Они и сейчас широко используются и в быту, как обычные счетчики воды, так и в промышленности, в особенности для контроля расхода газа. Существуют как стационарные приборы, для постоянного контроля расхода на некотором участке, так и портативные, переносные, для проверки различных удаленных объектов. Несомненное преимущество этих приборов – возможность контроля расхода снаружи, без произведения любых монтажных работ или врезок в трубу.
На практике используется три основных метода определения расхода определенной жидкости при помощи ультразвуковых расходомеров – метод фазового сдвига (он же времяимпульсный метод), доплеровский метод, и корреляционный, или метод сноса сигнала. Соответственно, существует и три основных типа ультразвуковых расходомеров, каждый из которых работает по своему методу.
Расходомер воздуха. Назначение и неисправности
Расходомер воздуха, он же датчик массового расхода воздуха – это часть системы впуска двигателя. Применяется на всех типах двигателей внутреннего сгорания, как на бензиновых, так и дизелях. Находится, как правило, между воздушным фильтром и дроссельной заслонкой.
Задача расходомера воздуха
С помощью данного датчика, блок управления двигателя определяет массу всасываемого воздуха, собственно, о чем и говорит название. Кроме этого, он еще измеряет температуру и давление всасываемого воздуха. Исходя из вычисленных значений, происходит регулировка впрыска топлива, которое смешивается с воздухом, образуя рабочую смесь, а также помогает в корректировке времени зажигания. Для дизельных двигателей, расходомер воздуха дополнительно влияет на рециркуляцию отработавших газов. Эти показатели должны быть оптимальны для полноценного сгорания топливовоздушной смеси.
Как проявляются неисправности датчика расхода воздуха
К сожалению, расходомер воздуха часто является источником ошибок и определенных проблем, связанных с неустойчивой работой мотора. На некоторых автомобилях, если датчик неисправен, двигатель больше не работает оптимально, и может даже попасть в аварийный режим. Если датчик неисправен или загрязнен, он не будет давать правильные показания контроллеру. Результат: оптимальное количество топлива не может быть рассчитано. Получается, что рабочая смесь выходит либо слишком обедненная, либо обогащенная. В любом случае, двигатель работает не устойчиво.
Симптомы варьируются от потери мощности, грубого хода и колебаний на холостом ходу, до нетипичных ранее выбросов выхлопных газов, включая черный дым. Однако, стоит учесть, что подобные вещи присущи и другим неисправностям, поэтому, прежде чем ставить диагноз самостоятельно, следует, все-таки, обратиться к специалистам на СТО. Электрик с помощью диагностического программного обеспечения и оборудования считывает ошибки, которые выдает неисправный расходомер и «приговаривает» его замену.
Обычно, работа по выявлению проблем с датчиком массового расхода воздуха, и его установке, занимает от 30 до 60 минут. После установки новой запчасти, иногда, требуется процедура адаптации (как и в случае с дроссельной заслонкой).
Больше полезных материалов в рубрике «ТехЗона»
Что делать, чтобы мотор автомобиля работал как часы?
Выбор расходомера, оптимально соответствующего условиям эксплуатации – задача не из легких. Необходимо учитывать характеристики среды, температурный режим, рабочее давление, динамический диапазон и другие факторы. Немаловажное значение имеют предел допустимой погрешности, требования к прямым участкам при монтаже, способ присоединения к процессу, а также межповерочный интервал и возможность поверки без демонтажа
При выборе средства измерения также исходят из того, какой расход предстоит учитывать: объемный или массовый. В данной статье мы рассмотрим наиболее востребованные приборы для измерения жидкости, а также приведем рекомендации специалистов ЗАО «ЭМИС».
ТИПЫ РАСХОДОМЕРОВ ЖИДКОСТИ
Вихревые
![]() | Данные приборы применяются для учета газа, пара и жидкостей вязкостью не более 7 мПа*с. Их традиционно используют на системах теплоснабжения и на трубопроводах промышленного назначения. Массовое применение они нашли также в нефтегазовой отрасли, благодаря таким При этом предел максимальной температуры измеряемой среды составляет +450°С. Немаловажную роль играет и их стоимость, которая ниже, чем, например, у кориолисовых |
Однако, отметим, что вихревые приборы учета могут работать на однофазных средах с невысокой вязкостью, при содержании механических примесей ниже среднего. Также следует учитывать требования к монтажу — прямые участки должны быть не менее 10 Ду (после сужения), 12 Ду (после колена, тройника, расширения) до и 5 Ду после расходомера.
Рассмотрим несколько рекомендаций от руководителя направления инженерного сопровождения продаж Ильи Стромова.
![]() | Вопрос: Требуется измерять расход керосина, его плотность составляет 780-850 кг/м3. Ответ: Рекомендую рассмотреть вихревой «ЭМИС-ВИХРЬ 200», а также кориолисовый Вопрос: Стоит задача осуществлять коммерческий учет в системе на основе 40% раствора этиленгликоля. Ответ: Для коммерческого учета этиленгликоля с концентрацией не выше 40%, можно применять: |
Кориолисовые
![]() | По сравнению с вихревым методом измерения, кориолисовый является универсальным. При этом имеется возможность калибровки погрешности от 0,5% и 0,25% до 0,15% и 0,1% соответственно. Универсальность заключается в возможности работать в двух направлениях. Кроме того, сам кориолисовый метод измерения является прямым методом Как и вихревой, кориолисовый счетчик используется для измерения жидкостей и газов. Он может эксплуатироваться на вязких, а также на двухкомпонентных жидкостях. Зачастую кориолисовые массомеры выбирают в тех случаях, когда нужна высокая точность |
Ниже приведены рекомендации по подбору от руководителя группы «Массовые расходомеры» Сергея Рогожина.
![]() | Вопрос: Подойдет ли массомер «ЭМИС-МАСС 260» для измерения битума БНД 60-90? Ответ:Данный прибор сможет производить учет битума, при этом предел максимальной Вопрос:Какое оборудование подойдет для замера дебита жидкости, добываемой Ответ: Для измерения дебита нефтяной скважины оптимально подойдет счетчик количества |
Ответ: Расход мазута можно измерять с помощью следующих приборов: «ЭМИС-МАСС 260»; «ЭМИС-ДИО 230».
Обращаю внимание, что значение имеет температура мазута при перекачке.Электромагнитные
![]() | В тех случаях, когда измеряемая жидкость обладает высокой Благодаря широкому перечню возможных материалов футеровки, он способен работать Класс точности у него составляет 0,5%. Также достоинствами являются минимальные длины измерительных участков и Однако, стоит учитывать, что типоразмеры для применения на трубопроводах большого |
Рассмотрим несколько конкретных рекомендаций от руководителя группы «Расходомеры и фильтры» Александра Овсиенко.
![]() | Вопрос: Какое оборудование посоветуете для определения объемов поступившего и Ответ:Для определения объема солевого раствора предлагаю электромагнитный Вопрос:Требуется учитывать соляную и азотную кислоты, температура которых может достигать Ответ: В этом случае Вам подойдет электромагнитный «ЭМИС-МАГ 270», который обладает |
Вопрос: Возможно ли измерять электромагнитным счетчиком водно-нефтяную эмульсию с обводненностью 20%?
Однако, при этом не допускается присутствие газовых включений.
Ротаметры
![]() | Ротаметры, наряду с электромагнитными счетчиками, также способны работать Как правило, их применяют на малых расходах. Погрешность при вертикальном исполнении для жидкости составляет до ± 1,0 %, Обязательное требование для ротаметров вертикального исполнения: монтаж на Для горизонтального: на строго горизонтальном участке с направлением потока слева направо, |
На вопросы отвечает руководитель группы «Расходомеры и фильтры» Александр Овсиенко.
Вопрос: Требуется учитывать трансформаторное масло в отапливаемом помещении. Параметры следующие: расход 0,5…10 л/мин, давление 6 кг/см2. Прибор нужен с индикатором и функцией передачи данных на компьютер по выходному сигналу 4-20 мА.
Ответ: Рекомендую роторный счетчик «ЭМИС-ДИО 230». Его технические характеристики соответствуют заданным условиям эксплуатации. Если вязкость масла находится в пределах до 5 МПа*с, то также Вы можете использовать ротаметр «ЭМИС-МЕТА 215».
Вопрос: Стоит задача измерения неравномерного потока жидкости с точностью ±1,5% . При этом при остановке потока периодически происходит её замерзание. Выходные сигналы — аналоговый токовый 4-20 мА, двухпроводная схема подключения. Диаметр трубы 15 мм.
Ответ: В данном случае оптимальным решением будет применение металлического ротаметра «ЭМИС-МЕТА 215». Он может использоваться с рубашкой обогрева (исполнение Т), со штуцерами, посредством которых подводится горячее масло, либо пар. Также это решение востребовано при необходимости сохранения температуры среды при её прохождении через ротаметр.
Вопрос: Нужен контроль потока воды на охлаждение при максимальном избыточном давлении 0,5 МПа. Точность — 2,5 %. Внутренний диаметр трубопровода — 15 мм.
Ответ: Для контроля данного технологического процесса можем предложить ротаметр «ЭМИС-МЕТА 215» с двумя предельными выключателями – верхним и нижним. Когда стрелка индикатора достигнет того или другого, сработает сигнал, который возможно использовать для световой/звуковой сигнализации или других электронных устройств, например, таких, как приводы запорной арматуры.
Роторные счетчики
![]() | В числе оборудования, рекомендуемого для измерения объема и объемного расхода Обычно их ставят на учет дизельного топлива, бензина, керосина и сжиженного газа на Они оснащены встроенным источником питания, при монтаже нет требований Погрешность составляет от 0,25% до 0,5 %, предел давления — до 6,3 Мпа, |
На вопросы отвечает руководитель группы «Расходомеры и фильтры» Александр Овсиенко.
Вопрос: Планируем подключить «ЭМИС-ДИО 230» к ПК. Установка программы «ЭМИС–Интегратор» произведена. Можем ли мы использовать в качестве преобразователя интерфейсов устройство ICP CON 7520A? Или необходимо устанавливать специальный преобразователь ОС ПК Windows 10?
Ответ: Для подключения к ПК по протоколу Modbus RTU подойдет любой преобразователь интерфейсов RS-485/USB(RS232), в том числе и ICP CON 7520A.
Вопрос: Что можете предложить для учета битума в составе оборудования асфальтобетонного завода на процессе дозирования?
Ответ: В этом случае предлагаем Вам использовать роторный счетчик «ЭМИС-ДИО 230».
Обращаем внимание, что оптимальный подбор возможен только после заполнения опросного листа, в котором необходимо указать все параметры технологического процесса и требования к техническим характеристикам прибора
ИЗМЕРЕНИЕ РАСХОДА ЖИДКОСТИ: КАРТА ВЫБОРА
* С- исполнение возможно по согласованию со специалистами
Если у вас остались вопросы по работе или подбору оборудования, вы можете задать их инженерам компании “ЭМИС”:
Как выбрать расходомер газа — статьи «Измеркон»
Выбор расходомера газа зависит от условий использования и от стоящих перед прибором задач.
Первое, что нужно учесть при подборе счетчика расхода – это характеристики измеряемой среды:
- тип газа,
- давление,
- температура.
Затем определиться со способом монтажа прибора и учесть связанные с этим параметры, такие как диаметр трубопровода. Наконец, следует задуматься о том, как будет производиться снятие данных с прибора. Рассмотрим все эти этапы подробнее.
Тип газа
При выборе расходомера сразу же нужно отобрать те приборы, которые способны проводить измерение конкретного, необходимого вам газа*. Некоторые расходомеры, такие как VA 400, могут проводить измерения различных газов (воздуха, азота, природного газа и т. д.), однако для измерения газов, значительно отличающихся по физическим свойствам от воздуха, приборы должны быть откалиброваны в соответствующей среде.
* в случае агрессивных или взрывоопасных газовых сред следует выбрать расходомеры с дополнительной защитой.
Давление
Далее следует уточнить давление измеряемой среды. Обычно для измерений сжатого воздуха (например, в компрессорных) и для измерения расхода воздуха при давлении близком к атмосферному (например, в вентиляционых системах) используются разные типы расходомеров. Расходомеры для вентиляции (например, SS 20.260) существенно дешевле, чем расходомеры сжатого воздуха (например, SS 20.261), так как рассчитаны на менее жёсткий режим работы.
Верхний допустимый предел давления у различных расходомеров отличается, поэтому в случае, если необходимо измерять расход газа под давлением, следует уточнить значение рабочего давления среды. Так, например, расходомер SS 20.261 можно использовать при давлении до 10 бар, SS 20.600 – до 16 бар (опционально – до 40), VA 400 – до 50 бар.
Температура
Большинство расходомеров рассчитаны на не слишком высокие и не слишком низкие температуры измеряемой среды (например, от -30 до +120° у SS 20.600). Поэтому, если температура среды превышает 100°С, следует удостовериться, что выбранный расходомер может работать в подобных условиях или выбрать специальный прибор, рассчитанный на работу в высокотемпературных средах (к примеру, SS 20.650).
Следует также обратить внимание на температуру окружающей среды. Температурные диапазоны для электронных компонентов (находящихся вне трубопровода) обычно уже, чем для чувствительного элемента. Поэтому если датчик предполагается эксплуатировать, например, зимой на открытом воздухе, необходимо удостовериться, что нижний предел допустимого температурного диапазона позволит прибору перенести сильный мороз.
Ориентировочный расход
Все расходомеры имеют тот или иной диапазон измеряемого расхода. При превышении пределов этого диапазона приборы перестают выдавать достоверные показания, поэтому при выборе прибора следует учитывать максимально возможный расход на заданном участке.
В случае тепловых расходомеров ограничения измерительных диапазонов проводятся не по объему проходящего воздуха (так как для одного и того же расходомера максимально допустимые значения объёмного расхода будут различаться в зависимости от диаметра трубопровода), а по скорости потока, приведенной к нормальным условиям.
Так максимальная допустимая скорость для расходомера SS 20.260– 50 м/с, для SS 20.261 – 90 м/с, для VA 400– 220 м/с. При этом вовсе не обязательно использовать расходомер с наибольшим скоростным диапазоном, так как чем больше диапазон, тем больше погрешность измерения (а часто – и цена). Поэтому очень важно знать максимально возможную скорость потока в конкретном случае.
Скорость потока зависит, во-первых, от объемов проходящего газа, то есть, собственно, от расхода и, во-вторых, от внутреннего диаметра трубопровода. Чем больше расход и чем меньше диаметр – тем выше скорость. О том, почему для выбора расходомера необходимо знать диаметр участка, на котором его будут использовать, мы подробнее расскажем далее.
Ориентировочный же расход, в случае, если речь идет о сжатом воздухе, можно узнать из технической документации компрессора. Методы расчета скорости на основе диаметра и расхода обычно приводятся в руководстве по использованию расходомера. К примеру, в данной таблице приведены максимальные значения расхода для различных версий расходомера VA 400:
Способ монтажа
Приняв во внимание характеристики измеряемой среды, нужно также обратить внимание на условия монтажа расходомера. Можно выделить 3 основных способа монтажа.
- Врезные расходомеры. Подобные приборы представляют собой уже готовую небольшую секцию трубопровода с установленным на ней расходомером. Для установки подобного прибора необходимо либо удалить участок трубы и установить расходомер на это место, либо производить монтаж на байпасном трубопроводе. Плюсом врезных расходомеров является их относительно невысокая стоимость (однако только если речь идет о небольших диаметрах трубопровода). Минусом же является неудобство монтажа – врезка требует определенных усилий, отнимает много времени и, разумеется, требует остановки производства. Кроме этого врезные расходомеры не подходят для использования на трубопроводах больших диаметров. К данному типу расходомеров относится, например, прибор VA 420.
- Погружные расходомеры. Для установки данных приборов не нужно вырезать целую секцию трубопровода или устанавливать байпасное соединение. Установка производится путем сверления небольшого отверстия в стенке трубопровода, помещения в него штанги расходомера и закрепления прибора в таком положении. Подробнее об установке погружного расходомера можно прочесть в соответствующей статье. Плюсами данного типа приборов является простота установки и относительно невысокая стоимость. Кроме этого данные приборы легко можно использовать на трубопроводах больших диаметров. К примеру, длина штанги у некоторых исполнений расходомера SS 20.600 позволяет использовать его в трубопроводах диаметром до 2 метров. Недостатком же является то, что данные приборы не очень удобно использовать на крайне малых трубопроводах – при значении диаметра 1/2» и менее предпочтительнее использовать врезные расходомеры.
- Накладные расходомеры. Принцип работы данных расходомеров не требует прямого доступа к измеряемой среде – измерение производится через стенку трубопровода обычно ультразвуковым методом. Монтаж данных расходомеров является наиболее удобным и простым, но их стоимость обычно в несколько раз выше, чем у погружных и врезных приборов, поэтому использовать их имеет смысл только в случае, если нет никакой возможности нарушать целостность трубопровода.
Диаметр трубопровода
Независимо от того, врезной, погружной или накладной расходомер будет использоваться, следует уточнить диаметр трубопровода на участке, где требуется установить расходомер.
При выборе врезного расходомера диаметр трубопровода является одним из основных параметров, так как данные приборы отличаются диаметром встроенной измерительной секции. Что касается погружных расходомеров, то может показаться, что при ни использовании диаметр не имеет значения, так как зонд расходомера можно погрузить в поток при любом диаметре, однако из-за того, что чувствительный элемент прибора (находящийся на конце зонда) должен быть помещен точно в центре трубопровода, следует удостовериться, что длины зонда хватит для монтажа на конкретном участке. Также рассчитывая минимальную необходимую длину зонда следует помнить, о том, что его часть придется на монтажные детали: полусгон и шаровой кран.
Допустим, внешний диаметр трубопровода составляет 200 мм. Значит погрузить зонд нужно будет на 100 мм. Еще 100-120 мм потребуется на осуществление монтажа. Таким образом, минимальная длина зонда при данном диаметре должна составлять 220 мм. Большинство расходомеров доступны в различных исполнениях, отличающихся длиной зонда. Так для расходомера VA 400 существуют исполнения с длиной 120, 220, 300 и 400 мм.
Снятие данных. Наличие дисплея и тип выходного сигнала
Наконец, следует определиться с тем, каким образом вы хотите получать результаты измерений. Большинство расходомеров используют аналоговый или цифровой выходной сигнал для передачи информации о результатах измерений. Если на предприятии имеется собственная автоматическая система управления технологическим процессом (АСУ ТП), в которую можно завести данные выходные сигналы, то аналогового или цифрового сигнала, скорее всего, будет достаточно. Однако, если готовой системы управления нет, может возникнуть необходимость снимать данные с дисплея. В некоторых расходомерах (например, у VA400) дисплей может быть уже встроен или доступен в качестве опции. Для других приборов нужно приобретать отдельный индикатор и подавать на него выходной сигнал датчика.
Данные, выводимые на дисплей, обычно ограничиваются текущим и накопленным расходом. В некоторых случаях может стоять задача регистрировать данные за разные промежутки времени и обрабатывать их, формируя отчеты и представляя информацию в табличном или графическом виде. Если на предприятии нет готовой системы управления, которая могла бы выполнять эти функции, то имеет смысл приобрести прибор с встроенным регистратором данных и идущим в комплекте программным обеспечением, позволяющим быстро и удобно проводить обработку полученных данных. Примером такого прибора может служить DS 400.
В случае, если расходомер не имеет встроенного дисплея и для получения данных требуется выходной сигнал, следует определиться с типом этого сигнала. К наиболее распространенным аналоговым сигналам относятся сигналы 4…20 мА и 0…10 В. Некоторые расходомеры, такие как SS 20.600 могут формировать любой из этих сигналов в зависимости от значения подключенного сопротивления. В некоторых случаях может потребоваться цифровой выходной сигнал, например, использующий протоколы Modbus или Profibus.
Перечисленных выше параметров должно быть достаточно для подбора расходомера. В то же время, если вы хотите иметь более полное представление о различных типах расходомеров, а также преимуществах и недостатках каждого типа, можете также прочесть статьи о классификации датчиков расхода по принципу измерения.
Расходомер — Википедия. Что такое Расходомер
Электромагнитный расходомер.
Расходоме́р — прибор, измеряющий объёмный расход или массовый расход вещества, то есть количество вещества (объём, масса), проходящее через данное сечение потока, например, сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство (счётчик) и служит для одновременного измерения и количества вещества, то его называют счётчиком-расходомером.
Механические счётчики расхода

Скоростные счётчики
Скоростные счётчики устроены таким образом, что жидкость, протекающая через камеру прибора, приводит во вращение вертушку или крыльчатку, угловая скорость которых пропорциональна скорости потока, а следовательно, и расходу.
Объёмные счётчики
Поступающая в прибор жидкость или газ измеряется отдельными, равными по объёму дозами, которые затем суммируются. Счётчики газа на этом принципе часто встречаются в быту.
Ёмкость и секундомер
Возможно, самый простой способ измерить расход — это использовать некоторую ёмкость и секундомер. Поток жидкости направляется в некоторую ёмкость, и по секундомеру засекается время заполнения этой ёмкости. Зная объём ёмкости и поделив его на время заполнения, можно узнать расход жидкости. Этот способ подразумевает прерывание нормального течения потока, однако может давать непревзойдённую точность измерения. Широко используется в тестовых и поверочных лабораториях.
Ролико-лопастные расходомеры
Шестерёнчатые расходомеры

Впервые расходомер с овальными шестернями был изобретен компанией Bopp & Reuther (Германия) в 1932 году.
Измеряющий элемент состоит из двух шестерёнок овальной формы. Протекающая жидкость вращает данные шестерёнки. При каждом обороте пары овальных колес через прибор проходит строго определённое количество жидкости. Считывая количество оборотов, можно точно определить, какой объём жидкости протекает через прибор.
Данные расходомеры отличаются высокой точностью, надёжностью и простотой, что позволяет их использовать для жидкостей с высокой температурой и под большим давлением. Отличительной особенностью расходомеров с овальными шестернями является возможность использования для жидкостей с высокой вязкостью (мазут, битум и т. д.).
Расходомеры на базе объёмных гидромашин
В системах объёмного гидропривода для измерения объёмного расхода рабочей жидкости применяют объёмные гидромашины (как правило — шестерённые или аксиально-плунжерные гидромашины).
Объёмная гидромашина в этом случае работает как гидродвигатель, но без нагрузки на валу. Тогда объёмный расход через гидромашину можно определить по формуле:
Q = q 0 ⋅ n , {\displaystyle Q=q_{0}\cdot n,}
где
- Q {\displaystyle Q} — объёмный расход,
- q 0 {\displaystyle q_{0}} — рабочий объём гидромашины (определяется по паспорту гидромашины),
- n {\displaystyle n} — частота вращения выходного вала гидромашины, которую можно измерить тахометром.
Заметим, что объёмная гидромашина пропускает через себя весь расход жидкости, что для объёмного гидропривода не представляет сложности ввиду малых расходов.
Рычажно-маятниковые расходомеры
Расходомеры переменного перепада давления
Расходомеры переменного перепада давления основаны на зависимости разницы давлений, создаваемых конструкцией расходомера, от расхода.
Расходомеры с сужающими устройствами
Они основаны на зависимости перепада давления на сужающем устройстве от скорости потока, в результате которого происходит преобразование части потенциальной энергии потока в кинетическую.
Принцип действия расходометров этого типа основан на эффекте Вентури. Вентури-расходомер сужает поток жидкости в некотором устройстве, например, диафрагмой и датчиками давления или дифманометром измеряет разницу давлений перед указанным устройством и непосредственно в месте сужения. Этот метод измерения расхода широко используется при транспортировке газов по трубопроводам и использовался ещё во времена Римской империи.
Диафрагма представляет собой диск со сквозным отверстием, вставленный в поток. Дисковая диафрагма сужает поток, и разница давлений, измеряемая перед и за диафрагмой, позволяет определить расход в потоке. Этот тип расходомера можно грубо считать одной из форм Вентури-метров, однако имеющую более высокие потери энергии. Существует три типа дисковых диафрагм: концентрические, эксцентриковые и сегментальные.[1][2]
Трубка Пито
Расходомеры на основе трубки Пито измеряют динамическое давление p ∂ ≈ ξ ρ V o 2 2 {\displaystyle p_{\partial }\approx \xi {\frac {\rho V_{o}^{2}}{2}}} в застойной зоне потока (англ.).
Зная динамическое давление, с помощью уравнения Бернулли можно определить скорость потока, а значит, и объёмный расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).
Расходомеры с гидравлическим сопротивлением
Центробежные расходомеры
Расходомеры с напорным устройством
Расходомеры с напорным усилителем
Расходомеры ударно-струйные
Расходомеры постоянного перепада давления

Ротаметры
Ротаметры предназначены для измерения расхода чистых жидкостей и газов. Они состоят из вертикальной конической трубы, выполненной из металла, стекла или пластика, в которой свободно перемещается вверх и вниз специальный поплавок. Поток движется по трубе в направлении снизу вверх, заставляя поплавок подниматься до уровня, на котором все действующие силы находятся в состоянии равновесия. На поплавок воздействуют три силы:
- выталкивающая сила, которая зависит от плотности среды и объёма поплавка;
- сила тяжести, которая зависит от массы поплавка;
- сила потока, которая зависит от формы поплавка и скорости потока, проходящего через сечение ротаметра между поплавком и стенками трубы.
Каждая величина расхода соответствует определённому переменному сечению, зависящему от формы конуса измерительной трубы и конкретного положения поплавка. В случае стеклянных конусов, значение расхода может быть считано прямо со шкалы на уровне поплавка. В случае конусов, выполненных из металла, положение поплавка передаётся на дисплей при помощи системы магнитов — не требуется никакого дополнительного источника питания. Различные диапазоны измерения достигаются за счёт многообразия размеров и форм конуса, а также возможности выбора различных форм и материалов изготовления поплавка.
Оптические расходомеры
Оптические расходомеры используют свет для определения расхода.
Лазерные расходомеры
Маленькие частички, которые неизбежно содержатся в природных и промышленных газах, проходят через два лазерных луча, направленных на поток от источника. Свет лазера рассеивается, когда частичка проходит через первый лазерный луч. Рассеянный лазерный луч поступает на фотодетектор, который в результате генерирует электрический импульсный сигнал. Если та же самая частица пересекает второй лазерный луч, то рассеянный лазерный свет поступает на второй фотодетектор, который генерирует второй импульсный электрический сигнал. Измеряя интервал времени между двумя этими импульсами, можно вычислить скорость газа по формуле V = D / T, где D — расстояние между двумя лазерными лучами, Т — время между двумя импульсами. Зная скорость потока, можно определить расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).
Основанные на лазерах расходомеры измеряют скорость частиц — параметр, который не зависит от теплопроводности, вида газа или его состава. Лазерная технология позволяет получать очень точные данные, причём даже в тех случаях, когда другие методы применять не удаётся или они дают большу́ю погрешность: при высоких температурах, малых расходах, высоких давлениях, высокой влажности, вибрациях трубопроводов и акустическом шуме.
Оптические расходометры способны измерять скорости потока от значений 0,1 м/с до более чем 100 м/с.
Ультразвуковые расходомеры
Принцип ультразвукового измерения расходаУльтразвуковые время-импульсные
Время-импульсные расходомеры измеряют разницу во времени прохождения ультразвуковой волны по направлению и против направления потока жидкости. Такой принцип измерений обеспечивает высокую точность (± 1 %). При этом он хорошо работает для чистого потока или потока с незначительным содержанием взвешенных частиц. Время-импульсные расходомеры применяются для измерения расхода очищенной, морской, сточной воды, нефти, в том числе сырой, технологических жидкостей, масел, химических веществ и любой однородной жидкости.
Принцип действия ультразвуковых расходомеров основан на измерении разницы во времени прохождения сигнала. При этом два ультразвуковых сенсора, расположенные по диагонали напротив друг друга, функционируют попеременно как излучатель и приёмник. Таким образом, акустический сигнал, поочерёдно генерируемый обоими сенсорами, ускоряется, когда направлен по потоку, и замедляется, когда направлен против потока. Разница во времени, возникающая вследствие прохождения сигнала по измерительному каналу в обоих направлениях, прямо пропорциональна средней скорости потока, на основании которой можно затем рассчитать объёмный расход. А использование нескольких акустических каналов позволяет компенсировать искажения профиля потока.
Ультразвуковые расходомеры на установке висбрекингаУльтразвуковые фазового сдвига
Ультразвуковые доплеровские
Доплеровский расходомер основан на эффекте Доплера. Он хорошо работает с суспензиями, где концентрация частиц выше 100 ppm и размер частиц больше 100 мкм, но концентрация составляет менее 10 %. Такие расходомеры жидкости легче и менее точные (± 5 %), а также дешевле, чем время-импульсные расходомеры.
Ультразвуковые корреляционные
Другим не столь популярным расходомером является ультразвуковой расходомер с последующей корреляцией (кросс-корреляция). Он позволяет устранить недостатки, свойственные доплеровским расходомерам. Они лучше работают для потока жидкости с твёрдыми частицами или турбулентного потока газа.
Электромагнитные расходомеры
Электромагнитный расходомер Принцип электромагнитного измерения расходаЕщё в 1832 году Майкл Фарадей пробовал определить скорость течения реки Темзы, измеряя напряжение, индуцируемое в потоке воды магнитным полем Земли. Принцип электромагнитного измерения расхода основан на законе индукции Фарадея. В соответствии с данным законом, напряжение создаётся, когда проводящая жидкость проходит через магнитное поле электромагнитного расходомера. Это напряжение пропорционально скорости потока среды.
Индуцированное напряжение измеряется либо двумя электродами, находящимися в контакте со средой, либо ёмкостными электродами, не контактирующими со средой, и передаётся в преобразователь сигналов. Преобразователь сигналов усиливает сигнал и преобразует его в стандартный токовый сигнал (4—20 мА), а также в частотно-импульсный сигнал (например, один импульс на каждый кубический метр измеряемой среды, прошедшей через измерительную трубу). Принцип действия электромагнитных расходомеров основан на взаимодействии движущейся электропроводной жидкости с магнитным полем. При движении жидкости в магнитном поле возникает ЭДС, как в проводнике, движущемся в магнитном поле. Эта ЭДС пропорциональна скорости потока, и по скорости потока можно определить расход.
Кориолисовые расходомеры
Кориолисов расходомерПринцип действия массовых расходомеров основан на эффекте Кориолиса. Массовый расход жидкостей и газов можно рассчитать по деформации измерительной трубы под действием потока. Плотность среды также можно рассчитать по резонансной частоте колебаний вибрирующей трубы. Вычисление силы Кориолиса осуществляется с помощью двух сенсорных катушек. При отсутствии потока оба сенсора регистрируют одинаковый синусоидальный сигнал. При появлении потока сила Кориолиса воздействует на поток частиц среды и деформирует измерительную трубу, что приводит к сдвигу фаз между сигналами сенсоров. Сенсоры измеряют сдвиг фаз синусоидальных колебаний. Этот сдвиг фаз прямо пропорционален массовому расходу.
Вихревые расходомеры
Вихревой расходомерПринцип измерения базируется на эффекте вихревой дорожки Кармана. Позади тела обтекания образуются вихри обратного направления вращения. В измерительной трубе находится завихритель, позади которого происходит вихреобразование. Частота вихреобразования пропорциональна расходу. Образующиеся вихри улавливаются и подсчитываются пьезоэлементом в первичном преобразователе в качестве ударных волн. Вихревые расходомеры подходят для измерения самых различных сред.
Тепловые расходомеры
Расходомеры теплового пограничного слоя
Калориметрические расходомеры
В калориметрических расходомерах происходит нагревание или охлаждение потока внешним источником тепла, создающим в потоке разницу температур, по которой и определяют расход. Если пренебречь потерями тепла из потока через стенки трубопровода в окружающую среду, то уравнение теплового баланса между теплом, генерируемым нагревателем, и теплом, переданным потоку, приобретает вид:
- q t = k 0 Q M c p Δ T {\displaystyle q_{t}=k_{0}Q_{M}c_{p}\Delta T} ,
где
Тепло к потоку в калориметрических расходомерах подводят обычно электронагревателями, для которых:
- q t = 0 , 24 I 2 R {\displaystyle q_{t}=0,24I^{2}R} ,
где
- I {\displaystyle I} — сила тока через нагревательный элемент;
- R {\displaystyle R} — электрическое сопротивление нагревателя.
На основе этих уравнений статическая характеристика преобразования, которая связывает перепад температур на сенсорах с массовым расходом, приобретёт вид:
- Q M = 0 , 24 I R k 0 c p Δ T {\displaystyle Q_{M}={\frac {0,24IR}{k_{0}c_{p}\Delta T}}} .