Чем магнитное поле отличается от электрического?
Магнитное и электрическое поля часто рассматриваются вместе, являясь, так сказать, двумя сторонами одной медали. Оба этих поля имеют много общего. Например, их обоих создают электрические заряды. На любые электрически заряженные тела действует кулоновская сила. Её ещё называют силой электростатического взаимодействия. Она прямо пропорциональна произведению модулей зарядов (знаки зарядов определяют лишь направление действия силы: притяжение или отталкивание) и обратно пропорциональна квадрату расстояния между этими телами. В случае сфер или шаров считается квадрат расстояния из центров тел.
Электрическое поле
Если мы возьмём заряженное тело и условно назовём его центром, а второе заряженное тело будем перемещать вокруг центра, то кулоновскую силу можно записать как заряд, умноженный на напряжённость электрического поля. В значение напряжённости входят и значение заряда-центра, и квадрат расстояния от центра до второго заряда в данной точке пространства. То есть мы просто взяли обычную кулоновскую силу и всё, кроме значения одного из зарядов, назвали напряжённостью электрического поля.
В каждой точке этого поля своё значение и направление кулоновской силы. Такое поле называется векторным, ведь в каждой точке свои модуль и направление вектора, проведённого из начала координат (из заряда-центра) к этой точке.
Магнитное поле
Магнитное поле, как и электрическое, является векторным. Если электрическое поле создаётся любыми заряженными телами, то магнитное поле создаётся только движущимися зарядами. Таким зарядом может быть имеющая скорость частица, которая нередко встречается в задачах по физике, ток, ведь ток – это направленное движение заряженных частиц, металлическое тело, движущееся со скоростью. В этом случае в роли зарядов будут электроны, которые движутся вместе с самим телом. Напряжённость магнитного поля прямо пропорциональна скорости заряда и его значению. Как только заряд будет остановлен, магнитное поле исчезнет.
Магнитное поле соленоида и постоянного магнита
Примеры магнитных полей
Электромагнит состоит из провода, обмотанного вокруг ферромагнетика. При прохождении через провод тока, появляется магнитное поле. Ферромагнетик – такое вещество, которое может вести себя как магнит ниже определённой температуры, называемой температурой Кюри. В обычных условиях ферромагнетики ведут себя как магниты только при наличии магнитного поля. В электромагните поле создаётся электрическим током, и ферромагнетик начинает вести себя как магнит. Также интересным примером является магнитное поле Земли.
Магнитное поле Земли
В центре нашей планеты, как считают учёные, находится ядро, состоящее из жидкого железа. Железо – металл, и в нём свободно перемещаются электроны. Это ядро не статично, то есть оно движется, в связи с этим движутся электроны и создают магнитное поле. Если бы земное ядро начало останавливаться, как это было в фильме Джона Эмиела «Ядро Земли», земное магнитное поле действительно бы исчезло, что привело бы к катастрофическим последствиям.
Основные сходства и различия
И электрическое, и магнитное поля являются силовыми. Это значит, что в каждой точке пространства, где действует это поле, на заряд действует определённая для этой точки сила. В другой точке эта сила будет другой. Электромагнитное поле действует на заряженные тела и частицы, но при этом электрическое поле действует на все заряды, а магнитное – только на движущиеся.
Есть вещества, взаимодействующие с магнитным полем, хотя и не содержащие в себе движущихся зарядов, например, упомянутые выше ферромагнетики. Аналогичных веществ для электрического поля нет. У магнитов, природных или намагниченных тел (как стрелка компаса, например), есть два полюса, которые называются северным и южным.
Обычные электрические заряды более-менее однородны и полюсов не содержат. Однако электрические заряды бывают двух типов: положительные и отрицательные. Знак заряда влияет на направление кулоновской силы и, следовательно, на взаимодействие двух заряженных частиц. Знак заряда не будет влиять на взаимодействие других зарядов с магнитным полем, он лишь поменяет полюса местами.
vchemraznica.ru
что общего, в чём разница
Хотя у большинства людей в школьной программе присутствовал курс физики, а кто-то даже продолжил изучать этот предмет уже в стенах университета, порой запутаться в некоторых терминах этой сложной, но интересной науки очень легко. К примеру, немногие вспомнят определения электрического и магнитного полей, и наверняка только единицы смогут назвать между ними разницу. Давайте же освежим знания в этой области и разберёмся, что к чему.
Электрическое поле
Под этим понятием физики понимают векторное поле, которое образуется вокруг обладающих каким-либо зарядом частиц или тел. ЭП – один из двух неотъемлемых компонентов электромагнитного поля. Для того чтобы лучше понять его природу, необходимо вспомнить понятие кулоновской силы.
Справка. Закон Кулона определяет степень взаимодействия между каждым из пары точечных электрических зарядов, опираясь на данные о расстоянии между ними.
Если говорить о понятии напряжённости ЭП, то удобнее всего рассматривать её на следующем примере:
- Имеется два обладающих зарядом тела, одно из которых неподвижно, а второе перемещается вокруг первого.
- Кулоновская сила в данном случае будет равна произведению заряда и напряжённости.
- Напряжённость же будет включать в себя значение центрального заряда и квадрат расстояния от центральной точки до второго тела.
Примечательно, что для каждой точки такого электрического поля направление и значение кулоновской силы будет различаться. Именно из-за разности в направлении в каждой точке ЭП называют векторным полем.
Магнитное поле
Данным термином физики называют силовое поле, воздействующее только на движущиеся тела, заряды или частицы, каждая из которых обладает магнитным моментом. Сила в этом случае в меньшей степени зависит от состояния движения заряда. В роли зарядов при этом могут выступать электроны. Что касается напряжённости такого поля, то её величина будет находиться в прямой пропорции от скорости заряда и его значения.
Справка. Нет движущегося заряда – нет магнитного поля.
Одним из самых лучших примеров МП на лекциях и семинарах по физике часто называется наша с вами планета. Дело в том, что поскольку центр планеты состоит пусть из раскалённого, но всё же железа, он (как и другие тела, состоящие из металлов) способен перемещать по себе электроны, в связи с чем самое большое магнитное поле на планете создаётся самой планетой, а точнее – её центром. Исчезновение этого поля привело бы к катастрофам и, возможно, гибели всего живого на Земле.
Более «классическим» примером МП можно считать электромагниты. Они обычно состоят из проводов, обмотанных вокруг ферромагнетиков. Ферромагнетики – это ряд веществ, которые получают магнитные свойства только в случае, если их температура ниже определённого уровня. Последнее понятие в физике называют температурой Кюри. Ферромагнетики, по сути – уникальные вещества, ведь они взаимодействуют с МП, не неся в себе движущихся зарядов.
Что общего
К сожалению, первым общим свойством рассматриваемых нами понятий будет их неполная исследованность. Несмотря на работы Джеймса Клерка Максвелла, в которых подробно рассматривалось взаимодействие и взаимосвязь между электрическими и магнитными полями, назвать их природу до конца изученной нельзя до сих пор, и на деле человечество сегодня может лишь использовать известные их свойства в практических целях. Впрочем, многое учёным известно и сегодня.
К примеру, оба поля являются неотъемлемыми компонентами электромагнитного поля, а также оба являются силовыми. Последнее понятие подразумевает, что в любой точке, находящейся в радиусе действия поля, на заряд действует определённая сила, и при смене положения значение силы будет меняться.
В чём разница
Как понятно из всего вышесказанного, отличительных черт между рассматриваемыми нами явлениями также немало. Прежде всего, электрические поля способны воздействовать на все заряженные частицы, в то время как МП «работает» только на тех частицах, которые находятся в движении. Если говорить о силе ЭП, то она будет пропорциональна заряду, а МП будет пропорционально не только заряду, но и скорости его движения.
Справка. Различаются в данном случае и единицы измерения: для ЭП – это вольт на метр, а напряжённость МП выражают в теслах (Тл) или гауссах (Гс).
Ещё одним интересным свойством будет тот факт, что в электромагнитном поле оба его компонента будут колебаться под прямым углом относительно друг друга. Эту и другие особенности взаимодействия отразил в своём уравнении Джеймс Клерк Максвелл, много лет занимавшийся изучением магнитных и электрических полей.
Вот мы и рассмотрели основную разницу и общие черты между двумя тесно связанными друг с другом понятиями в физике. Надеемся, что в данном материале вы смогли почерпнуть для себя что-то новое и интересное.
otlichaet.com
Электрические и магнитные поля 2019
Электрические и магнитные поля Область, которая окружает электрически заряженную частицу, обладает свойством, которое называется электрическим полем. Это оказывает силу на другие заряды, s или электрически заряженные объекты. Именно Фарадей представил эту концепцию. Электрическое поле выражается в ньютонах на кулон, когда в единицах СИ. Это также эквивалентно вольтам на метр. Напряженность поля в данной точке описывается как сила, которая проявляется, с положительным тестовым зарядом +1 кулоновского места в этой определенной точке. Невозможно измерить напряженность поля без тестового заряда, потому что «нужно знать один», когда дело доходит до электрических полей. Электрическое поле рассматривается как векторная величина. Сила такого поля связана с электрическим давлением, называемым напряжением, и сила переносится через пространство от одного заряда к другому заряду. Когда заряд движется, он имеет не только электрическое поле, но и магнитное поле. Вот почему электрические и магнитные поля всегда связаны друг с другом. Это две разные области, но не совершенно разные явления. Из этих двух полей «электромагнит» стал другим термином отсчета. Расходы, движущиеся в одном направлении, производят электрический ток. Как упоминалось ранее, движущиеся заряды создают магнитную силу. Таким образом, при наличии электрического тока присутствует магнитное поле. Сила магнитного поля выражается в Gauss (G) или Tesla (T). Магнитные материалы вокруг них имеют магнитные поля, которые считаются неотъемлемыми. Магнитные поля обнаруживаются из-за силы, которую они оказывают на магнитные материалы и другие движущиеся электрические заряды. Магнитное поле также рассматривается как векторное поле, так как оно имеет конкретное направление и величину. Электрическое поле имеет силу, пропорциональную количеству электрического заряда в поле, а сила находится в направлении электрического поля. С другой стороны, сила магнитного поля также пропорциональна электрическому заряду, но также учитывает скорость движущегося заряда. Магнитная сила перпендикулярна магнитному полю и направлению движущегося заряда. В электромаг
ru.esdifferent.com
1.7. Электрические и магнитные поля
После того, как были найдены законы взаимодействия неподвижных и движущихся зарядов, оставался без ответа вопрос о том, как передается взаимодействие между зарядами.
Как может передаваться действие одного тела на другое, если они находятся на некотором расстоянии?
Отвечая на поставленный вопрос, прежде всего необходимо исследовать, нет ли между этими телами каких-либо связей, какой-либо среды, способной передавать взаимодействие. Попытки объяснить передачу действия подобным образом можно найти ещё у древних мыслителей: «Тело не может действовать там, где его нет».
В эпоху зарождения классического естествознания французский ученый Рене Декарт (1596-1650 гг.) провозгласил принцип согласно которому действие передается через среду в течение некоторого времени.
Принцип, согласно которому действие передается через промежуточное звено, через посредника с конечной скоростью, лежит в основе концепции близкодействия.
Когда был открыт закон Всемирного тяготения, и Ньютоном было установлено, что причиной движения являются силы, большинство ученых склонны были считать, что взаимодействие определяется лишь значением силы в той или иной точке пространства. По представлениям большинства ученых того времени, для передачи взаимодействия не нужен никакой посредник. Утвердился принцип дальнодействия (действие на расстоянии) как способ передачи действия тяготения через пустоту и мгновенно.
Закон Кулона, состоявшийся под впечатлением открытого Ньютоном закона Всемирного тяготения, также трактует взаимодействие зарядов как «действие на расстоянии». Кулон был убежден, что взаимодействие зависит только от величин зарядов и от расстояния между ними, а «пустота» между зарядами никакого участия во взаимодействии не принимает.
Концепция дальнодействия или действия на расстоянии: тела способны мгновенно «чувствовать» присутствие друг друга без какой-либо среды.
На разных этапах развития науки доминировала либо одна, либо другая концепции. Они противостояли друг другу, ученые приводили аргументы, математические доказательства в подтверждение истинности теории, сторонниками которой они являлись. Иногда авторитет ученых, склонных придерживаться той или иной концепции, тоже был аргументом, доказывающим справедливость теории.
К XVIII в. оформляются две точки зрения на проблему взаимодействия. Одна основана на принципе дальнодействия, другая — на принципе близкодействия.
В 30-е г. xix в. был совершен поворот к концепции близкодействия, но только на более высоком уровне представлений. Это сделал великий английский естество испытатель М. Фарадей (1791 – 1867 гг.) – творец основ электромагнетизма. Фарадей выдвигает концепцию поля. Согласно Фарадею, электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое, магнитное (если заряд движется) поля. Поле одного заряда действует на другой заряд и наоборот. Взаимодействие передается не мгновенно, а с конечной скоростью.
Физические поля — это первичные понятия. Поле — это одна из форм существования материи.
Поле реально, оно не зависит от наших знании о нем. Наши представления о том, что такое поле, образуются в результате опытного исследования его свойств.
!Электрическое поле создается зарядами.
Главное свойство электрического поля — это способность действовать на электрические заряды (как на подвижные, так и на неподвижные) с некоторой силой.
По действию на заряд устанавливается присутствие поля, распределение его в пространстве, изучаются все его характеристики.
Силовой характеристикой электрического поля яаляется физическая величина, называемая напряженностью электрического поля. Для исследования силового действия здектрического поля заряда q нужно поместить в это поле пробный заряд q0. Практически это будет какое-то заряженное тело, которое имеет малые размеры и малый заряд, чтобы можно было пренебречь влиянием этого заряда на изучаемое поле. Согласно закону Кулона на пробный заряд будет действовать сила:
Найдем отношениеF к q0:
Отношение, как видно, не зависит от выбора пробного заряда и характеризует поле в данной точке. Это отношение зависит только от величины заряда, который создает поле, и от расстояния от источника поля до точки, в которую помещают пробный заряд. Абсолютно очевидно, что чем больше величина заряда, создающего поле, тем больше отношение; чем дальше помещают пробный заряд от источника поля, тем меньше величина, определяемая вышеуказанным отношением. Величина, определяемая этим отношением, является напряженностью Е поля в данной точке.
Напряженность электрического поля — это физическая величина, равная отношению силы, действующей со стороны поля на заряд, к величине этого заряда:
Напряженность поля — величина векторная. За направление вектора напряженности электрического поля принимается направление вектора кулоновской силы, действующей на положительный электрический заряд, помещённый в данную точку поля.
Единица напряженности электрического поля в СИ — ньютон на кулон (Н/Кл).
Если значение напряженности в одних и тех же точках пространства с течением времени не меняется, то мы имеем дело с постоянным электрическим полем. Если значение напряженности в одних и тех же точках пространства с течением времени меняется, то электрическое поле — переменное.
Электростатическое поле — электрическое поле, создаваемое неподвижными зарядами.
Мы живем в электрическом поле, напряженность которого у поверхности Земли составляет 130 Н/Кл.
Если электрическое поле создается несколькими зарядами q1, q2 … qn , то напряженность поля системы зарядов будет определяться как векторная сумма напряженности полей, связанных с каждым из зарядов в отдельности :
E = E1+ E2+ …En. (в векторном виде)
Это соотношение отражает принцип наложения (суперпозиции) полей.
В основе представлений Фарадея об электрическом поле было понятие о силовых линиях, которые расходятся во все стороны от наэлектризованных тел. Эти линии, дающие направление действия электрической силы в каждой точке, были известны уже давно. Их наблюдали и изучали как любопытное явление. Если продолговатые кристаллики диэлектрика (например, хинина) хорошо перемешать в такой вязкой жидкости, как касторка, то вблизи заряженных тел эти кристаллики выстроятся в цепочки, образуя линии.
Силовые линии по Фарадею — это наглядное изображение реальных процессов, происходящих в пространстве вблизи наэлектризованных тел или магнитов. Силовые линии помогают наглядно представить распределение поля в пространстве, и не более реальны, чем параллели и меридианы на земном шаре.
Силовые линии или линии напряженности — это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности в этой точке поля.
Вслучае поля точечного заряда силовые линии радиальные прямые, расходящиеся от заряда(рис. 6).
Направление силовых линий совпадает с направлением векторов напряженности поля. Силовые линии положительного заряда направлены от заряда, а отрицательного – к заряду.
Силовые линии электростатического поля не замкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных.
Это свидетельство того, что источниками электрического поля являются электрические заряды.
Силовые линии электростатического поля не пересекаются.
На рис. 7 изображены силовые линии электрического поля системы двух зарядов: разноименных и одноименных. Из рисунков видно, что по густоте линий можно судить о напряженности электрического поля.
Электрическое поле называется однородным, если вектор его напряженности одинаков во всех точках пространства. Пример такого поля —электрическое поле между двумя близко расположенными параллельными пластинами, равномерно заряженными по их поверхности разноименными, равными по значению зарядами.
На рис.8 показаны силовые линии такого поля. На рисунке видно, что однородное электрическое поле существует только в пространстве между пластинами.
Важнейшим свойством электрического поля как особого вида материи является наличие энергии. Поля, обладающие энергией, называются потенциальными. Электростатическое поле является потенциальным полем. Наличие энергии свидетельствует о том, что при перемещении заряда в однородном электростатическом поле совершается работа, которая не зависит от формы траектории и на замкнутой траектории равна нулю.
Перейдем к представлению магнитного поля. Всякий движущийся заряд создает в окружающем пространстве магнитное иоле, способное действовать на другие движущиеся заряды.
Главное свойство магнитного поля — это способность действовать на движущиеся заряды с определенной силой.
! Создается магнитное поле только движущимися электрическими зарядами (проводниками стоком).
Силовая характеристика магнитного поля, по причинам исторического характера, получила название не напряженность, а индукция. Принято обозначать индукцию магнитного поля буквой В. Обычно эту физическую величину вводят путем рассмотрения действия магнитного поля на маленькую пробную рамку с током. Такая рамка должна иметь малые размеры, чтобы по ее поведению можно было судить о магнитном поле в малой области пространства (в «точке»). Ток в этой рамке должен быть достаточно мал, чтобы его влиянием на источники исследуемого магнитного поля можно было пренебречь. Пробная рамка с током, помещенная в магнитное поле, будет располагаться определенным образом. Силы, действующие на нее со стороны магнитного поля, будут разворачивать рамку. Вращающий момент сил будет максимален, когда рамка ориентированна перпендикулярно магнитным линиям. Отношение максимального вращающего момента Ммах к произведению силы тока I на площадь, ограниченную рамкой, S характеризует магнитное поле в том месте, где расположена рамка. Это отношение и принимают, по определению, за модуль вектора магнитной индукции В.
Модуль вектора магнитной индукции — это физическая величина, численно равная отношению максимального вращающего момента, действующего на рамку с током со стороны магнитного поля, к произведению силы тока в рамке на площадь, ограниченную рамкой:
За единицу магнитной индукции в СИ принята единица, которая называется тесла (Тл).
Как и электрическое поле, магнитное поле удовлетворяет принципу суперпозиции: если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником.
Направление вектора магнитной индукции определяется с помощью правила буравчика или правило винта с правой нарезкой:
!Если буравчик с правой резьбой ввинчивать по направлению тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением силовых линий магнитного поля, создаваемого этим током.
Направление магнитных силовых линий в каждой точке совпадает с направлением вектора магнитной индукции.
Как и в случае электрического поля, картину силовых линий магнитного поля можно сделать «видимой». Для этого используют мелкие железные опилки, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль силовых линий. Наблюдения за распределением магнитного поля убеждают нас, что силовые линии магнитного поля всегда замкнуты, охватывают проводник с током, который порождает поле. Поля с замкнутыми силовыми линиями являются вихревыми полями. Замкнутость силовых линий магнитного поля свидетельствует о том, что в природе нет магнитных зарядов.
studfile.net
Электрическое, магнитное и электромагнитное поле
Наиболее сложные понятия, с которыми приходится сталкиваться при изучении электротехники и радиотехники, — это понятия об электрическом, магнитном и электромагнитном поле. И дело здесь, пожалуй, не в том, что электрическое или магнитное поля нельзя увидеть или потрогать рукой. Ведь мы довольно четко, хотя и упрощенно, представляем себе атом, несмотря на то что посмотреть на него не можем.
Основная трудность состоит в том, что невозможно представить себе какую-нибудь модель поля подобно тому, как мы рисуем в своем воображении упрощенную модель атома. Понятие об электрическом, магнитном и электромагнитном полях лучше всего взять из простейших опытов. Затем можно будет дополнить и развивать эти понятия, используя огромные достижения математики и физики в области изучения полей.
Электрическое поле возникает вокруг всякого электрического заряда или вокруг предмета, на котором имеется избыток зарядов какого-нибудь одного знака. Мы потерли о шерсть пластмассовую палочку дли обычную гребенку, создав на ней избыток отрицательных зарядов, и пространство вокруг гребенки приобрело какие-то особые свойства: мелкие клочки бумаги, попадая в это пространство, начинают притягиваться к ней. Каким образом наэлектризованная гребенка действует на клочки бумаги? Может быть, действие электрических сил передается через частицы окружающего воздуха?
Ни в коем случае! Если мы проделаем свой опыт в пустоте, то клочки бумаги будут так же притягиваться к гребенке, как и в воздухе или в каком-либо другом газе (рис. 25). Значит, дело здесь не в молекулах, атомах или других частицах окружающей среды. Значит, вокруг электрического заряда (в данном случае вокруг наэлектризованной гребенки) существует какое-то особое состояние пространства, какая-то особая форма материи, через которую и передается действие электрических сил. Эта особая форма материи, существующая наряду с такой известной нам формой материи, как вещество, и есть электрическое поле.
Науке уже многое известно об электрическом поле. Известно, например, что оно обладает определенной массой и запасом энергии (в нашем опыте эта энергия расходуется на перемещение к гребенке клочков бумаги). Многого об электрическом поле мы еще не знаем, однако факт его существования, подтвержденный многочисленными опытами, не может вызывать никаких сомнений.
Другая особая форма материи, существование которой также подтверждается опытами, — это магнитное поле. Магнитное поле появляется как следствие движения электрических зарядов. В этом легко убедиться, если поднести компас к проводнику, по которому течет постоянный ток (рис. 7). Под действием магнитного поля, возникающего вокруг проводника с током, стрелка компаса несколько отклонится, так же как она отклонилась бы под действием обычного магнита. Магнитное поле, как и электрическое, обладает запасом энергии (в нашем примере часть этой энергии расходуется на поворот стрелки компаса).
Электрическое и магнитное поля тесно связаны с электрическим зарядом или его движением: уберите заряд — и электрическое поле исчезнет; прекратите ток в цепи — и магнитного поля нет. Но можно получить электрическое и магнитное поля, а точнее, более сложное, электромагнитное поле, не связанное с электрическими зарядами, как бы оторванное от них.
Электромагнитное поле имеет черты как электрического поля (как говорят, имеет электрическую составляющую), так и магнитного поля (магнитная составляющая). Это значит, что электромагнитное поле могло бы при определенных условиях и поворачивать стрелку компаса, подобно магнитному полю, и перемещать электрические заряды, подобно электрическому полю. Электрическая и магнитная составляющие тесно связаны между собой, и каждая из них обладает запасом энергии, определяющим энергию всего электромагнитного поля.
Электромагнитное поле возникает при любом, даже незначительном изменении тока в проводнике. Изменяясь вместе с током, оно воздействует на соседние участки пространства, передает им свою энергию, и в этих, соседних участках также образуется электромагнитное поле. Таким образом, во все стороны от проводника, со скоростью света — 300 000 км/сек — все дальше и дальше движется волна электромагнитного поля, перенося с собой запасы энергии, которые она получила еще в месте своего возникновения.
oldradiogid.ru
Различие между стержневым магнитом и электромагнитом
Основное отличие между стержневым магнитом и электромагнитом — то, что у стержневого магнитаесть постоянное магнитное поле, тогда как у электромагнита есть временное магнитное поле.
Магнит — материал, который может произвести магнитное поле. Магнитное поле невидимо. Но, это может произвести силу, которая надевает другие ферромагнитные материалы, такие как железо. Кроме того, это может или привлечь или отразить другие магниты. Кроме того, есть два главных типа магнитов как постоянные и временные магниты. Стержневой магнит — хороший пример постоянного магнита, тогда как электромагнит — пример временного.
Содержание
- Обзор и основное отличие
- Что является Стержневым магнитом
- Что является Электромагнитом
- Сравнение – стержневой магнит против электромагнита
- Резюме
Что такое Стержневой магнит?
Стержневой магнит — постоянный магнит, который может создать его собственное постоянное магнитное поле. Линии магнитного поля этого магнита формируют закрытые линии. Прежде всего, полевое направление направленно наружу из Северного полюса и входит в Южный полюс магнита. Ферромагнитные материалы могут использоваться, чтобы сделать стержневые магниты.
Стержневой магнитМагнитное поле является самым сильным в магните. Рассматривая внешнее магнитное поле, самое сильное около полюсов. Северный полюс одного магнита может привлечь Южный полюс другого магнита. Однако Северный полюс отражает Северный полюс другого магнита и наоборот. Мы можем легко проследить линии магнитного поля этих магнитов, используя компас. Игла компаса вращается, пока это не выстраивается в линию с линиями магнитного поля магнита.
Что такое Электромагнит?
Электромагнит — тип временного магнита, который может произвести магнитное поле в присутствии электрического тока. Это временное, потому что магнитное поле исчезает, когда мы выключаем электрический ток. Кроме того, эти магниты, как правило, содержат проводную рану к в катушку. Здесь, ток, который проходит через провод, создает магнитное поле.
ЭлектромагнитИ, это магнитное поле сконцентрировано в отверстии в центре катушки раны. Часто, катушка — рана, окружающая магнитный сердечник. Кроме того, этот магнитный сердечник — ферромагнитный материал. Поэтому, это может произвести сильное магнитное поле.
Главное преимущество этого типа магнитов состоит в том, что мы можем быстро изменить магнитное поле, управляя электрическим током, который проходит через провод. Однако один недостаток — то, что этому нужно непрерывное электроснабжение, чтобы поддержать магнитное поле.
Каково Различие Между Стержневым магнитом и Электромагнитом?
Стержневой магнит — постоянный магнит, который может создать его собственное постоянное магнитное поле, тогда как электромагнит — тип временного магнита, который может произвести магнитное поле в присутствии электрического тока. Поэтому, основное отличие между стержневым магнитом и электромагнитом — то, что у стержневого магнита есть постоянное магнитное поле, тогда как у электромагнитов есть временное магнитное поле. Кроме того, мы не можем изменить магнитное поле стержневого магнита быстро, как мы желаем, но с электромагнитами, это возможно, управляя электрическим током, который проходит через провод. Так, это также различие между стержневым магнитом и электромагнитом. Кроме того, мы можем использовать стержневой магнит, как это — всего лишь электромагниты, всегда нуждаются в электроснабжении, чтобы создать магнитное поле.
Резюме – стержневой магнит против электромагнита
И стержневые магниты и электромагниты — общие типы магнитов, которые могут привлечь или отразить вещи. Основное отличие между стержневым магнитом и электромагнитом — то, что у стержневого магнита есть постоянное магнитное поле, тогда как у электромагнита есть временное магнитное поле.
raznisa.ru
Магнитное поле постояннoго электрического тока. Видеоурок. Физика 11 Класс
Каждый из вас держал в руках магнит и знает его удивительное свойство: он на расстоянии взаимодействует с другим магнитом или с куском железа. Что есть такого в магните, что придает ему эти удивительные свойства? Можно ли самому сделать магнит? Можно, и что для этого нужно – вы узнаете из нашего урока. Забежим наперед: если взять простой железный гвоздь, он не будет обладать магнитными свойствами, но, если обмотать его проволокой и подключить ее к батарейке, мы получим магнит (см. рис. 1).
Рис. 1. Гвоздь, обмотанный проволокой и подключенный к батарейке
Оказывается, чтобы получить магнит, нужен электрический ток – движение электрического заряда. С движением электрического заряда связаны и свойства постоянных магнитов, таких как магнитики на холодильнике. Некого магнитного заряда, подобно электрическому, в природе не существует. Он и не нужен, достаточно движущихся электрических зарядов.
Прежде чем исследовать магнитное поле постоянного электрического тока, нужно договориться, как количественно описывать магнитное поле. Для количественного описания магнитных явлений необходимо ввести силовую характеристику магнитного поля. Векторная величина, количественно характеризующая магнитное поле, называется магнитной индукцией. Обозначается она обычно большой латинской буквой B, измеряется в тесла.
Магнитная индукции – векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Направление магнитного поля определяется по аналогии с моделью электростатики, в которой поле характеризуется действием на пробный покоящийся заряд. Только здесь в качестве «пробного элемента» используется магнитная стрелка (продолговатый постоянный магнит). Такую стрелку вы видели в компасе. За направление магнитного поля в какой-либо точке принято направление, которое укажет северный полюс N магнитной стрелки после переориентации (см. рис. 2).
Рис. 2. Направление магнитного поля
Полную и наглядную картину магнитного поля можно получить, если построить так называемые силовые линии магнитного поля (см. рис. 3).
Рис. 3. Силовые линии магнитного поля постоянного магнита
Это линии, показывающие направление вектора магнитной индукции (то есть направления полюса N магнитной стрелки) в каждой точке пространства. С помощью магнитной стрелки, таким образом, можно получить картину силовых линии различных магнитных полей. Вот, например, картина силовых линий магнитного поля постоянного магнита (см. рис. 4).
Рис. 4. Силовые линии магнитного поля постоянного магнита
Магнитное поле существует в каждой точке, но линии мы изображаем на некотором расстоянии друг от друга. Это просто способ изображения магнитного поля, аналогично мы поступали с напряженностью электрического поля (см. рис. 5).
Рис. 5. Линии напряженности электрического поля
Чем более плотно нарисованы линии – тем больше модуль магнитной индукции в данной области пространства. Как видите (см. рис. 4), силовые линии выходят из северного полюса магнита и входят в южный полюс. Внутри магнита силовые линии поля также продолжаются. В отличие от силовых линий электрического поля, которые начинаются на положительных зарядах и заканчиваются на отрицательных, силовые линии магнитного поля замкнутые (см. рис. 6).
Рис. 6. Силовые линии магнитного поля замкнуты
Поле, силовые линии которого замкнуты, называется вихревым векторным полем. Электростатическое поле не является вихревым, оно потенциальное. Принципиальное различие вихревых и потенциальных полей в том, что работа потенциального поля на любом замкнутом пути равна нулю, для вихревого поля это не так. Земля тоже является огромным магнитом, она обладает магнитным полем, которое мы обнаруживаем с помощью стрелки компаса. Подробнее о магнитном поле Земли рассказано в ответвлении.
Наша планета Земля является большим магнитом, полюса которого находятся неподалеку от пересечения поверхности с осью вращения. Географически это Южный и Северный полюса. Именно поэтому стрелка в компасе, которая тоже является магнитом, взаимодействует с Землей. Она ориентируется таким образом, что один конец указывает на Северный полюс, а другой – на Южный (см. рис. 7). Рис.7. Стрелка в компасе взаимодействует с Землей Тот, который указывает на Северный полюс Земли, обозначили N, что означает North – в переводе с английского «Север». А тот, который указывает на Южный полюс Земли – S, что означает South – в переводе с английского «Юг». Так как притягиваются разноименные полюса магнитов, то северный полюс стрелки указывает на Южный магнитный полюс Земли (см. рис. 8). Рис. 8. Взаимодействие компаса и магнитных полюсов Земли Получается, что Южный магнитный полюс находится у Северного географического. И наоборот, Северный магнитный находится у Южного географического полюса Земли. |
Теперь, познакомившись с моделью магнитного поля, исследуем поле проводника с постоянным током. Еще в XIX веке датский ученый Эрстед обнаружил, что магнитная стрелка взаимодействует с проводником, по которому течет электрический ток (см. рис. 9).
Рис. 9. Взаимодействие магнитной стрелки с проводником
Практика показывает, что в магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке будет устанавливаться по касательной к некоторой окружности. Плоскость этой окружности перпендикулярна проводнику с током, а ее центр лежит на оси проводника (см. рис. 10).
Рис. 10. Расположение магнитной стрелки в магнитном поле прямого проводника
Если изменить направление протекания тока по проводнику, то магнитная стрелка в каждой точке развернется в противоположную сторону (см. рис. 11).
Рис. 11. При изменении направления протекания электрического тока
То есть направление магнитного поля зависит от направления протекания тока по проводнику. Описать эту зависимость можно при помощи простого экспериментально установленного метода – правила буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения его ручки совпадает с направлением магнитного поля, создаваемого этим проводником (см. рис. 12).
Рис.12. Направление магнитного поля
Итак, магнитное поле проводника с током направлено в каждой точке по касательной к окружности, лежащей в плоскости, перпендикулярной проводнику. Центр окружности совпадает с осью проводника. Направление вектора магнитного поля в каждой точке связано с направлением тока в проводнике правилом буравчика. Опытным путем, при изменении силы тока и расстояния от проводника, установлено, что модуль вектора магнитной индукции пропорционален току и обратно пропорционален расстоянию от проводника . Модуль вектора магнитной индукции поля, создаваемого бесконечным проводником с током, равен:
где – коэффициент пропорциональности, который нередко встречается в магнетизме. Называется магнитной проницаемостью вакуума. Численно равен:
Для магнитных полей, как и для электрических, справедлив принцип суперпозиции. Магнитные поля, создаваемые разными источниками в одной точке пространства, складываются (см. рис. 13).
Рис. 13. Магнитные поля разных источников складываются
Суммарная силовая характеристика такого поля будет векторной суммой силовых характеристик полей каждого из источников. Величину магнитной индукции поля, создаваемого током в определенной точке, можно увеличить, если согнуть проводник в окружность. Это будет понятно, если рассмотреть магнитные поля небольших сегментов такого витка провода в точке, находящейся внутри этого витка. Например, в центре.
Сегмент, обозначенный , по правилу буравчика создает в ней поле, направленное вверх (см. рис. 14).
Рис. 14. Магнитное поле сегментов
Сегмент аналогично создает в этой точке магнитное поле, направленное туда же. Аналогично и для других сегментов. Тогда суммарная силовая характеристика (то есть вектор магнитной индукции B) в этой точке будет суперпозицией силовых характеристик магнитных полей всех малых сегментов в этой и будет направлено вверх (см. рис. 15).
Рис. 15. Суммарная силовая характеристика в центре витка
Для произвольного витка, не обязательно в форме окружности, например для квадратной рамки (см. рис. 16), величина вектора внутри витка будет, естественно, зависеть от формы, размеров витка и силы тока в нем, но направление вектора магнитной индукции всегда будет определяться таким же способом (как суперпозиция полей, создаваемых малыми сегментами).
Рис. 16. Магнитное поле сегментов квадратной рамки
Мы подробно описали определение направления поля внутри витка, но в общем случае его можно находить гораздо проще, по немного измененному правилу буравчика:
если вращать рукоятку буравчика в том направлении, куда течет ток в витке, то ост
interneturok.ru