Линии магнитного поля в пространстве вне постоянного магнита начинаются на: Магнитное поле. Линии — материалы для подготовки к ЕГЭ по Физике

Содержание

Магнитное поле. Линии — материалы для подготовки к ЕГЭ по Физике

Оглавление:

  • Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током.
  • Взаимодействие магнитов
  • Линии магнитного поля
  • Опыт Эрстеда
  • Магнитное поле прямого провода с током
  • Магнитное поле витка с током
  • org/ListItem»> Магнитное поле катушки с током
  • Гипотеза Ампера. Элементарные токи

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако

взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.

• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде

диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд ,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

к оглавлению ▴

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии.

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства

.

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

к оглавлению ▴

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

к оглавлению ▴

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями.

Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас.

Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля, или магнитной индукцией. Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в

теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции. Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

к оглавлению ▴

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки. Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки

.

Правило винта. Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока.

Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.

к оглавлению ▴

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 — изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом.

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец — к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля — параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке — тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь — главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6) с линиями поля магнита на рис. 1. Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

к оглавлению ▴

Гипотеза Ампера.

Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита — полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него.

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой — это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке — почти через сто лет после гениальной догадки Ампера.

Благодарим за то, что пользуйтесь нашими статьями. Информация на странице «Магнитное поле. Линии» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена: 07.04.2023

Откуда Куда идут магнитные линии

Статьи › Магнит › Постоянный Магнит случайно уронили на пол из за чего он раскололся на две части

Силовые линии магнитного поля замкнуты. Они выходят из северного полюса и входят в южный. Таким образом, направление вектора магнитной индукции совпадает с направлением северного конца магнитной стрелки.

  • Магнитные линии замкнуты и выходят из северного полюса и входят в южный.
  • Направление вектора магнитной индукции соответствует направлению северного конца магнитной стрелки.
  • Линии магнитного поля можно провести через любую точку около проводника с током.
  • Железные опилки намагничиваются в поле проводника с током и указывают направление линий магнитной индукции.
  • Магнитные линии выходят из северного полюса магнита и входят в южный полюс.
  • Магнитные линии нигде не начинаются и не заканчиваются, так как в природе нет магнитных зарядов.
  • Магнитные поля возникают в присутствии движущихся зарядов (электрический ток), и чем быстрее движется заряд, тем сильнее поле.
  • Магнитные линии позволяют наглядно изображать магнитные поля графически вокруг постоянных магнитов и проводников с током.
  • Магнитные линии у постоянного магнита направлены от северного полюса к южному вне магнита и от южного к северному внутри магнита.
  • Направление магнитного поля определяется как направление северного полюса стрелки компаса в данной точке, и зависит от направления тока в проводнике.
  1. Откуда и куда направлены магнитные линии
  2. Куда направлены магнитные линии в магните
  3. Откуда выходят линии магнитного поля
  4. Где начинаются и где заканчиваются магнитные линии
  5. Где магнитное поле сильнее
  6. Что делают магнитные линии
  7. Как расположены магнитные линии у постоянного магнита
  8. Как направляются магнитные линии
  9. В каком направлении движутся магнитные линии
  10. Как определить куда направлен ток
  11. Что будет если не будет магнитного поля
  12. Куда направлено магнитное поле Земли
  13. Как определить расположение полюсов магнита
  14. Как расположены магнитные линии Земли
  15. Как можно обнаружить магнитное поле
  16. Что такое магнитная линия
  17. Где находится магнитное поле
  18. Почему линии магнитного поля замкнуты
  19. Какое поле у магнита
  20. Как идут линии магнитной индукции
  21. Почему магнит притягивает и отталкивает
  22. Почему Магнитит магнит
  23. Можно ли увидеть магнитные линии
  24. Чем порождается магнитное поле в магните
  25. Как магнит действует на организм человека
  26. Чем отличается электромагнит и постоянный магнит
  27. Как магнит работает
  28. Как располагаются магнитные линии
  29. Какое направление магнитных линий
  30. Какое направление имеют линии магнитного поля

Откуда и куда направлены магнитные линии

Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Куда направлены магнитные линии в магните

Через любую точку около проводника с током можно провести магнитную линию. Направление линий магнитного поля совпадает с направлением северного конца магнитной стрелки компаса. Железные опилки намагничиваются в поле проводника с током и действуют как стрелки компаса, указывая направление линий магнитной индукции (рис.

Откуда выходят линии магнитного поля

Силовые линии выходят из северного полюса магнита и входят в южный полюс.

Где начинаются и где заканчиваются магнитные линии

В учебниках подчеркивается основное свойство магнитных линий: они, в отличие от линий электростатического поля (силовых линий), которые начинаются на положительных зарядах и заканчиваются на отрицательных, нигде не начи- наются и не заканчиваются, так как в природе нет магнитных зарядов.

Где магнитное поле сильнее

Как известно из основ электродинамики, там, где есть движущиеся заряженные частицы (то есть, по сути, электрический ток), есть и магнитное поле. И чем быстрее движется заряд — тем сильнее поле. Поэтому естественно, что магнитные поля являются неизменными спутниками жизни звезд, и в частности Солнца.

Что делают магнитные линии

Ответ или решение1. Понятие магнитной линией магнитного поля позволяет наглядно изображать магнитные поля графически, как вокруг постоянных магнитов, так и вокруг проводников с током.

Как расположены магнитные линии у постоянного магнита

Принято считать, что магнитные линии направлены вне постоянного магнита от северного полюса к южному, а внутри магнита от южного полюса к северному. Таким образом, магнитные линии замкнуты точно так же, как и у электрического тока, это концентрические окружности, они замыкаются внутри самого магнита.

Как направляются магнитные линии

Направление магнитного поля в данной точке можно определить как направление, которое указывает северный полюс стрелки компаса, помещенного в эту точку. Направление линий магнитной индукции зависит от направления тока в проводнике. Определяется направление вектора индукции по правилу буравчика или правилу правой руки.

В каком направлении движутся магнитные линии

Магнитные линии направлены против часовой стрелки. Существует правило, с помощью которого легко научиться определить зависимость между направлением тока и направлением магнитных линий. Это правило получило название правило Буравчика или правило правого винта.

Как определить куда направлен ток

Правило правой руки Для определения направления магнитных линий возле проводника с током существует правило буравчика (правило правого винта) — если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока (см.

Что будет если не будет магнитного поля

Если исчезнет магнитное поле, то эти частицы будут ионизировать всё вещество на поверхности Земли, в том числе и живые клетки, что приведёт к их гибели, атмосфера постепенно будет терять вещество. Радиация убьёт все виды живых существ, за исключением разве что бактерий и примитивных форм.

Куда направлено магнитное поле Земли

На север. Магнитное поле Земли служит многим живым организмам для ориентации в пространстве.

Как определить расположение полюсов магнита

«Северный» полюс определяется как полюс магнита, который, будучи подвешенный в свободном состоянии, указывает на географический Северный полюс Земли. Аналогично, «южный» полюс магнита указывает на географический Южный полюс Земли. Разноимённые полюса будут притягиваться, соответственно одноимённые будут отталкиваться.

Как расположены магнитные линии Земли

Расположение северного магнитного полюса не совпадает с географическим северным полюсом. Примерно с начала XVII века полюс располагается под паковыми льдами в границах нынешней канадской Арктики. Это приводит к тому, что стрелка компаса показывает на север не точно, а лишь приблизительно.

Как можно обнаружить магнитное поле

Магнитное поле обнаруживается по его воздействию на проводник с током. Движение проводника вызвано действием на него магнитного поля со стороны дугового магнита. Если поменять местами полюсы магнита, проводник меняет направление движения на противоположное.

Что такое магнитная линия

Магнитной линией магнитного поля называются линии, вдоль которых располагаются оси маленьких магнитных стрелок.

Где находится магнитное поле

Основной источник магнитного поля находится внутри Земли — в ядре. В некотором упрощении можно сказать, что земной шар представляет собой полосовой магнит с осью, направленной приблизительно с севера на юг.

Почему линии магнитного поля замкнуты

Замкнутость силовых линий магнитного поля отличает его от, например, электростатического поля, линии которого разомкнуты и уходят в бесконечность. Она означает и то, что в природе не существует магнитов только с одним полюсом.

Какое поле у магнита

Вокруг магнита существует магнитное поле. Поля двух магнитов взаимодействуют между собой, и это взаимодействие проявляется как притяжение или отталкивание магнитов. Для визуализации магнитного поля постоянного магнита используют железные опилки.

Как идут линии магнитной индукции

Силовые линии магнитного поля замкнуты. Они выходят из северного полюса и входят в южный. Таким образом, направление вектора магнитной индукции совпадает с направлением северного конца магнитной стрелки.

Почему магнит притягивает и отталкивает

Магниты притягивают или отталкивают другие металлы. Это происходит потому, что каждый магнит имеет два полюса: северный и Южный. Северный и Южный полюса притягивают друг друга, но два северных или два южных полюса отталкивают друг друга.

Почему Магнитит магнит

Атомы в некоторых веществах могут объединяться в микро области, в которых магнитные магнитные моменты направлены в одну сторону. Именно благодаря наличию таких моментов вещество может обладать свойством постоянной намагниченности. В присутствии внешнего сильно магнитного поля, эти домены ориентируются по нему.

Можно ли увидеть магнитные линии

Глазами человека магнитное поле нельзя увидеть, но некоторые организмы научились его воспринимать и использовать его силовые линии для пространственной ориентации. Существует несколько гипотез физической основы «магнитного чувства».

Чем порождается магнитное поле в магните

Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Как магнит действует на организм человека

Как магнитные поля действуют на организм

Изменение скорости миграции ионов кальция, влияющего на здоровье костей; оптимизация ферментной активности, стимулирование выработки гормонов; восстановление кислотно-щелочного баланса жидкостей в человеческом теле.

Чем отличается электромагнит и постоянный магнит

Главное отличие электромагнита от постоянного магнита в том, что можно регулировать магнитное действие электромагнита, меняя силу тока в катушке.

Как магнит работает

Если атомы вещества расположены в произвольном порядке, как чаще всего и бывает, поля этих наномагнитов компенсируют друг друга. Но если эти магнитные поля направить в одну и ту же сторону, то они сложатся — и получится магнит.

Как располагаются магнитные линии

Магнитные линии всегда направлены от северного полюса к южному, непрерывны и замкнуты (возможно, в бесконечности). Плотность магнитных линий служит показателем силы магнитного поля.

Какое направление магнитных линий

Магнитные линии представляют собой замкнутые кривые — внутри стрелки их направление будет от южного полюса с северному, вне стрелки вблизи полюсов направление будет сохраняться, по мере удаления от полюсов плавно меняться на противоположное.

Какое направление имеют линии магнитного поля

Силовые линии магнитного поля замкнуты. Они выходят из северного полюса и входят в южный. Таким образом, направление вектора магнитной индукции совпадает с направлением северного конца магнитной стрелки.

Магниты и электромагниты

Магниты и электромагниты

Строки магнитное поле из брускового магнита образуют замкнутые линии. По соглашению, направление поля считается наружу от Северный полюс и в к Южному полюсу магнита. Постоянные магниты могут быть изготовлены из ферромагнитных материалов.

Как видно из линий магнитного поля, магнитное поле наиболее сильно внутри магнитного материала. Наиболее сильные внешние магнитные поля находятся вблизи полюсов. Северный магнитный полюс будет притягивать южный полюс другого магнита и отталкивать северный полюс.

Линии магнитного поля стержневого магнита можно проследить с помощью компаса. Стрелка компаса сама по себе является постоянным магнитом, а указатель севера компаса является магнитным северным полюсом. Северный полюс магнита будет стремиться выровняться с магнитным полем, поэтому подвешенная стрелка компаса будет вращаться, пока не выровняется с магнитным полем. В отличие от притяжения магнитных полюсов, северный указатель компаса будет указывать на южный полюс магнита. В ответ на магнитное поле Земли компас будет указывать на географический северный полюс Земли, потому что на самом деле это южный магнитный полюс. Силовые линии магнитного поля Земли входят в Землю вблизи географического Северного полюса.

Сравнение магнитного и электрического полей Сравнение с магнитным полем соленоида
Индекс

Концепции магнитного поля

  900 18
Гиперфизика***** Электричество и магнетизм R Ступица
Назад
Электрическое поле точечного заряда направлено радиально наружу от положительного заряда. Магнитное поле стержневого магнита.
Электрический источники по своей сути являются «монопольными» или точечными источниками заряда. Магнитные источники по своей сути являются дипольными источниками — вы не можете изолировать северные или южные «монополя».
Индекс

Магнитная сила

Концепции магнитного поля

 
Гиперфизика***** Электричество и магнетизм R Ступица
Назад

Магнитное поле, создаваемое электрическим током в соленоидной катушке, похоже на поле стержневого магнита.

Линии магнитного поля можно рассматривать как карту, представляющую магнитное влияние объекта-источника в окружающем его пространстве. Свойства силовых линий магнитного поля можно обобщить следующим образом:

  1. Направление магнитного поля касается линии магнитного поля в любой точке пространства.
  2. Сила магнитного поля визуализируется близостью линий друг к другу. Он пропорционален количеству линий на единицу площади, перпендикулярной линиям. часто используемая фраза — «плотность магнитного потока».
  3. Линии магнитного поля никогда не пересекаются. Магнитное поле в любой точке уникально.
  4. Линии магнитного поля непрерывны и образуют замкнутые петли без начала и конца.
(Список адаптирован из обсуждения OpenStaxCollege.)
Добавить железный сердечник к соленоиду
Индекс

Концепции магнитного поля

  900 18
Гиперфизика***** Электричество и магнетизм R Ступица
Назад

Железный сердечник имеет эффект многократного умножения в магнитный поле соленоид по сравнению в воздух основной соленоид слева.

Свойства соленоида с железным сердечником
Индекс

Концепции магнитного поля

  900 18
Гиперфизика***** Электричество и магнетизм R Ступица
Назад

Электромагниты обычно имеют форму соленоидов с железным сердечником. Ферромагнитное свойство железного сердечника приводит к тому, что внутренние магнитные домены железа выравниваются с меньшим движущим магнитным полем, создаваемым током в соленоиде. Эффект заключается в умножении магнитного поля в десятки и даже тысячи раз. Отношение поля соленоида равно

и k — относительная проницаемость железа, показывает увеличительный эффект железного сердечника.

Индекс

Концепции магнитного поля

  900 18
Гиперфизика***** Электричество и магнетизм R Ступица
Вернуться назад

электромагнетизм — Начинаются ли силовые линии магнитного поля из одной и той же точки на магните?

спросил

Изменено 1 год, 3 месяца назад

Просмотрено 2к раз

$\begingroup$

Меня смущает точка, откуда берут начало силовые линии магнитного поля. Всегда ли они начинаются из одной и той же точки или существует бесконечно много точек, из которых берет начало магнитная линия?

Если второе верно, то может ли из любой из этих точек исходить более одной точки?

Я хочу спросить то же самое для точки, где они возвращаются к южному полюсу магнита.

  • электромагнетизм
  • магнитные поля

$\endgroup$

0

$\begingroup$

В случае силовых линий магнитного поля нет конкретной «точки происхождения». Это связано с тем, что силовые линии магнитного поля образуют непрерывные замкнутые петли. Даже внутри постоянных магнитов (таких как стержневой магнит) силовые линии магнитного поля соединяются с южным полюсом к северному. Кроме того, силовые линии магнитного поля не могут пересекаться, а это означает, что не может быть общей точки, из которой могли бы исходить две или более силовые линии магнитного поля.

$\endgroup$

$\begingroup$

Если поле $\vec{B}$ не обращается в нуль в точке пространства (ни внутри, ни снаружи магнита), то любая силовая линия, проходящая через эту точку, должна касаться $\vec{B}$ в этой точке. точка. Нетрудно заметить, что отсюда следует, что только одна силовая линия может проходить через любую точку пространства, где поле не равно нулю; если бы две силовые линии пересекались в какой-то точке, это означало бы два разных направления $\vec{B}$ в этой точке.

$\endgroup$

1

$\begingroup$

Если верить уравнению Максвелла, то $\nabla \cdot \vec{B} = 0$ говорит о том, что в магнитном поле не может быть ни стоков, ни источников. Линии поля либо образуют замкнутые петли, либо уходят в бесконечность.

$\endgroup$

6

$\begingroup$

Линии поля отсутствуют. Мы рисуем силовых линий так, чтобы их плотность была пропорциональна силе поля вокруг них, и рисуем их в виде петель, чтобы уловить идею безрасходимости поля. Рисунок может передать довольно хорошую картину того, как выглядит поле. Поле вокруг магнита нигде не равно нулю.

Подумайте о контурах на топографической карте. Контуров в реальном мире нет, но мы рисуем их так, чтобы их плотность была пропорциональна уклону местности вокруг них. Линии поля аналогичны. Однако не думайте слишком много о контурах, потому что у магнитного поля нет аналога высоты.

$\endgroup$

1

$\begingroup$

Атомы обладают атомным магнитным моментом, и атомы в небольшой области сильно взаимодействуют друг с другом, создавая небольшую область, в которой поле действует параллельно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Copyright © 2025
Дропшиппинг в России.
Сообщество поставщиков дропшипперов и интернет предпринимателей.
Все права защищены.
ИП Калмыков Семен Алексеевич. ОГРНИП: 313695209500032.
Адрес: ООО «Борец», г. Москва, ул. Складочная 6 к.4.
E-mail: [email protected]. Телефон: +7 (499) 348-21-17