Комбинаторика что это такое: Комбинаторика — Википедия – Комбинаторика: основные правила и формулы.

Содержание

Комбинаторика — Википедия

Комбинато́рика (комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана с другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний (например, в генетике, информатике, статистической физике).

Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве».

Иногда под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов.

Примеры комбинаторных конфигураций и задач[править | править код]

Для формулировки и решения комбинаторных задач используют различные модели комбинаторных конфигураций. Примерами комбинаторных конфигураций являются:

  • Размещением из n элементов по k называется упорядоченный набор из k различных элементов некоторого n-элементного множества.
  • Перестановкой из n элементов (например чисел 1, 2, …
    n
    ) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n.
  • Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.
  • Композицией числа n называется всякое представление n в виде упорядоченной суммы целых положительных чисел.
  • Разбиением числа n называется всякое представление n в виде неупорядоченной суммы целых положительных чисел.

Примеры комбинаторных задач:

  1. Сколькими способами можно разместить n предметов по m ящикам, чтобы выполнялись заданные ограничения?
  2. Сколько существует функций F{\displaystyle F} из m-элементного множества в n-элементное, удовлетворяющих заданным ограничениям?
  3. Сколько существует различных перестановок из 52 игральных карт?
    Ответ: 52! (52 факториал), то есть, 80 658 175 170 943 878 571 660 636 856 403 766 975 289 505 440 883 277 824 000 000 000 000 или примерно 8,0658 ⋅ 10
    67
    .
  4. При игре в кости бросаются две кости, и выпавшие очки складываются; сколько существует комбинаций, в которых сумма очков на верхних гранях равна двенадцати?
    Решение: Каждый возможный исход соответствует функции F:{1,2}→{1,2,3,4,5,6}{\displaystyle F:\{1,2\}\to \{1,2,3,4,5,6\}} (аргумент функции — это номер кости, значение — очки на верхней грани). Очевидно, что лишь 6 + 6 даёт нам нужный результат 12. Таким образом, существует лишь одна функция, ставящая в соответствие 1 число 6, и 2 число 6. Или, другими словами, существует всего одна комбинация, при которой сумма очков на верхних гранях равна двенадцати.

Перечислительная комбинаторика[править | править код]

Перечислительная комбинаторика (или исчисляющая комбинаторика) рассматривает задачи о перечислении или подсчёте количества различных конфигураций (например, перестановок) образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.

Количество конфигураций, образованных несколькими манипуляциями над множеством, подсчитывается согласно правилам сложения и умножения.

Типичным примером задач данного раздела является подсчёт количества перестановок. Другой пример — известная Задача о письмах.

Структурная комбинаторика[править | править код]

К данному разделу относятся некоторые вопросы теории графов, а также теории матроидов.

Экстремальная комбинаторика[править | править код]

Примером этого раздела может служить следующая задача: какова наибольшая размерность графа, удовлетворяющего определённым свойствам.

Теория Рамсея[править | править код]

Теория Рамсея изучает наличие регулярных структур в случайных конфигурациях элементов. Примером утверждения из теории Рамсея может служить следующее:

в группе из 6 человек всегда можно найти трёх человек, которые либо попарно знакомы друг с другом, либо попарно незнакомы.

В терминах структурной комбинаторики это же утверждение формулируется так:

в любом графе с 6 вершинами найдётся либо клика, либо независимое множество размера 3.

Вероятностная комбинаторика[править | править код]

Этот раздел отвечает на вопросы вида: какова вероятность присутствия определённого свойства у заданного множества.

Топологическая комбинаторика[править | править код]

Топологическая комбинаторика применяет идеи и методы комбинаторики в топологии, при изучении дерева принятия решений, частично упорядоченных множеств, раскрасок графа и др.

Инфинитарная комбинаторика[править | править код]

Инфинитарная комбинаторика (англ.) — применение идей и методов комбинаторики к бесконечным (в том числе, несчётным) множествам.

Комбинаторика, и в частности, теория Рамсея, содержит много известных открытых проблем, подчас с весьма несложной формулировкой. Например, неизвестно, при каком наименьшем N в любой группе из N человек найдутся 5 человек, либо попарно знакомых друг с другом, либо попарно незнакомых (хотя известно, что 49 человек достаточно).[1]

Джероламо Кардано написал математическое исследование игры в кости, опубликованное посмертно. Теорией этой игры занимались также Тарталья и Галилей. В историю зарождавшейся теории вероятностей вошла переписка заядлого игрока Шевалье де Мерэ с Пьером Ферма и Блезом Паскалем, где были затронуты несколько тонких комбинаторных вопросов. Помимо азартных игр, комбинаторные методы использовались (и продолжают использоваться) в криптографии — как для разработки шифров, так и для их взлома.

F:\{1,2\}\to \{1,2,3,4,5,6\}

Блез Паскаль много занимался биномиальными коэффициентами и открыл простой способ их вычисления: «треугольник Паскаля». Хотя этот способ был уже известен на Востоке (примерно с X века), Паскаль, в отличие от предшественников, строго изложил и доказал свойства этого треугольника. Наряду с Лейбницем, он считается основоположником современной комбинаторики. Сам термин «комбинаторика» придумал Лейбниц, который в 1666 году (ему было тогда 20 лет) опубликовал книгу «Рассуждения о комбинаторном искусстве». Правда, термин «комбинаторика» Лейбниц понимал чрезмерно широко, включая в него всю конечную математику и даже логику[2]. Ученик Лейбница Якоб Бернулли, один из основателей теории вероятностей, изложил в своей книге «Искусство предположений» (1713) множество сведений по комбинаторике.

В этот же период формируется терминология новой науки. Термин «сочетание» (combination) впервые встречается у Паскаля (1653, опубликован в 1665 году). Термин «перестановка» (permutation) употребил в указанной книге Якоб Бернулли (хотя эпизодически он встречался и раньше). Бернулли использовал и термин «размещение» (arrangement).

После появления математического анализа обнаружилась тесная связь комбинаторных и ряда аналитических задач. Абрахам де Муавр и Джеймс Стирлинг нашли формулы для аппроксимации факториала.[3]

Окончательно комбинаторика как самостоятельный раздел математики оформилась в трудах Эйлера. Он детально рассмотрел, например, следующие проблемы:

Кроме перестановок и сочетаний, Эйлер изучал разбиения, а также сочетания и размещения с условиями.

Комбинаторика (языкознание) — это свойство единиц языка и соответствующих им единиц речи вступать в синтагматические отношения, то есть в отношения сочетаемости.

  • Андерсон, Джеймс. Дискретная математика и комбинаторика = Discrete Mathematics with Combinatorics. — М.: «Вильямс», 2006. — 960 с. — ISBN 0-13-086998-8.
  • Виленкин Н. Я. . Популярная комбинаторика. — М.: Наука, 1975.
  • Ерош И. Л. Дискретная математика. Комбинаторика — СПб.: СПбГУАП, 2001. — 37 c.
  • Липский В. . Комбинаторика для программиста. — М.: Мир, 1988. — 213 с.
  • Райгородский А. М. . Линейно-алгебраические и вероятностные методы в комбинаторике. — Летняя школа «Современная математика». — Дубна, 2006.
  • Райзер Г. Дж. Комбинаторная математика. — пер. с англ. — М., 1966.
  • Рейнгольд Э., Нивергельт Ю., Део Н. . Комбинаторные алгоритмы. Теория и практика. — М.: Мир, 1980. — 476 с.
  • Риордан Дж . Введение в комбинаторный анализ. — пер. с англ. — М., 1963.
  • Стенли Р . Перечислительная комбинаторика = Enumerative Combinatorics. — М.: «Мир», 1990. — 440 с. — ISBN 5-03-001348-2.
  • Стенли Р . Перечислительная комбинаторика. Деревья, производящие функции и симметрические функции = Enumerative Combinatorics. Volume 2. —
    М.
    : «Мир», 2009. — 767 с. — ISBN 978-5-03-003476-8.

Комбинаторика: основные правила и формулы.

КОМБИНАТОРИКА

Комбинаторика – раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и  принципы  комбинаторики  используются  в  теории  вероятностей для подсчета  вероятности  случайных  событий и,  соответственно, получения законов распределения случайных величин. Это,  в  свою  очередь,  позволяет  исследовать  закономерности массовых случайных явлений, что является весьма важным для правильного понимания  статистических  закономерностей, проявляющихся в природе и технике.

 

Правила сложения и умножения в комбинаторике

Правило суммы.  Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В – n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m  способами.

 

Пример 1.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?

Решение

Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.

По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.

 

Правило произведения.  Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n1 способами, второе действие n2 способами, третье – n3 способами и так до k-го действия, которое можно выполнить nk  способами, то все k действий вместе могут быть выполнены:

способами.

Пример 2.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?

Решение

Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.

После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.

По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.

 Сочетания без повторений. Сочетания с повторениями

 Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов?

Пример 3.

Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?

Решение

Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:

.

 Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?

.

Пример 4.

В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение

Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.

.


 Размещения без повторений. Размещения с повторениями

 Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?

 

Пример 5.

В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?

Решение.

В  данной  задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более од

Комбинаторика - это... Что такое Комбинаторика?

Комбинато́рика (Комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана со многими другими областями математики — алгеброй, геометрией, теорией вероятностей и имеет широкий спектр применения в различных областях знаний (например в генетике, информатике, статистической физике).

Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве».

Иногда под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов.

Примеры комбинаторных конфигураций и задач

Для формулировки и решения комбинаторных задач используют различные модели комбинаторных конфигураций. Примерами комбинаторных конфигураций являются:

  • Размещением из n элементов по k называется упорядоченный набор из k различных элементов некоторого n-элементного множества.
  • Перестановкой из n элементов (например чисел 1,2,…,n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n.
  • Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.
  • Композицией числа n называется всякое представление n в виде упорядоченной суммы целых положительных чисел.
  • Разбиением числа n называется всякое представление n в виде неупорядоченной суммы целых положительных чисел.

Примерами комбинаторных задач являются:

  1. Сколькими способами можно разместить n предметов по m ящикам так, чтобы выполнялись заданные ограничения?
  2. Сколько существует функций из m-элементного множества в n-элементное, удовлетворяющих заданным ограничениям?
  3. Сколько существует различных перестановок из 52 игральных карт?
    Ответ: 52! (52 факториал), то есть, 80658175170943878571660636856403766975289505440883277824000000000000 или примерно 8,0658 × 1067.
  4. При игре в кости бросаются две кости, и выпавшие очки складываются; сколько существует комбинаций, таких, что сумма очков на верхних гранях равна двенадцати?
    Решение: Каждый возможный исход соответствует функции (аргумент функции — это номер кости, значение — очки на верхней грани). Очевидно, что лишь 6+6 даёт нам нужный результат 12. Таким образом существует лишь одна функция, ставящая в соответствие 1 число 6, и 2 число 6. Или, другими словами, существует всего одна комбинация, такая, что сумма очков на верхних гранях равна двенадцати.

Разделы комбинаторики

Перечислительная комбинаторика

Перечислительная комбинаторика (или исчисляющая комбинаторика) рассматривает задачи о перечислении или подсчёте количества различных конфигураций (например, перестановок) образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.

Количество конфигураций, образованных несколькими манипуляциями над множеством, подсчитывается согласно правилам сложения и умножения.

Типичным примером задач данного раздела является подсчёт количества перестановок. Другой пример — известная Задача о письмах.

Структурная комбинаторика

К данному разделу относятся некоторые вопросы теории графов, а также теории матроидов.

Экстремальная комбинаторика

Примером этого раздела может служить следующая задача: какова наибольшая размерность графа, удовлетворяющего определённым свойствам.

Теория Рамсея

Теория Рамсея изучает наличие регулярных структур в случайных конфигурациях элементов. Примером утверждения из теории Рамсея может служить следующее:

в группе из 6 человек всегда можно найти трёх человек, которые либо попарно знакомы друг с другом, либо попарно незнакомы.

В терминах структурной комбинаторики это же утверждение формулируется так:

в любом графе с 6 вершинами найдётся либо клика, либо независимое множество размера 3.

Вероятностная комбинаторика

Этот раздел отвечает на вопросы вида: какова вероятность присутствия определённого свойства у заданного множества.

Топологическая комбинаторика

Топологическая комбинаторика (англ.) применяет идеи и методы комбинаторики в топологии, при изучении дерева принятия решений, частично упорядоченных множеств, раскрасок графа и др.

Инфинитарная комбинаторика

Инфинитарная комбинаторика (англ.) — применение идей и методов комбинаторики к бесконечным (в том числе, несчётным) множествам.

Открытые проблемы

Комбинаторика, и в частности, теория Рамсея, содержит много известных открытых проблем, подчас с весьма несложной формулировкой. Например, неизвестно, при каком наименьшем N в любой группе из N человек найдутся 5 человек, либо попарно знакомых друг с другом, либо попарно незнакомых (хотя известно, что 49 человек достаточно).[1]

Исторический очерк

См. также

Примечания

Литература

  • Андерсон Джеймс. Дискретная математика и комбинаторика = Discrete Mathematics with Combinatorics. — М.: «Вильямс», 2006. — С. 960. — ISBN 0-13-086998-8
  • Виленкин Н.Я. Популярная комбинаторика. — М.: Наука, 1975.
  • Ерош И. Л. Дискретная математика. Комбинаторика — СПб.: СПбГУАП, 2001. — 37 c.
  • Липский В. Комбинаторика для программиста. — М.: Мир, 1988. — 213 с.
  • Раизер Г. Дж. Комбинаторная математика. — пер. с англ. — М., 1966.
  • Райгородский А. М. Линейно-алгебраические и вероятностные методы в комбинаторике. — Летняя школа «Современная математика». — Дубна, 2006.
  • Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. Теория и практика. — М.: Мир, 1980. — 476 с.
  • Риордан Дж. Введение в комбинаторный анализ. — пер. с англ. — М., 1963.
  • Р. Стенли. Перечислительная комбинаторика = Enumerative Combinatorics. — М.: «Мир», 1990. — С. 440. — ISBN 5-03-001348-2
  • Р. Стенли. Перечислительная комбинаторика. Деревья, производящие функции и симметрические функции = Enumerative Combinatorics. Volume 2. — М.: «Мир», 2009. — С. 767. — ISBN 978-5-03-003476-8

Ссылки

Комбинаторика — Википедия. Что такое Комбинаторика

Комбинато́рика (комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана с другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний (например, в генетике, информатике, статистической физике).

Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве».

Иногда под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов.

Примеры комбинаторных конфигураций и задач

Для формулировки и решения комбинаторных задач используют различные модели комбинаторных конфигураций. Примерами комбинаторных конфигураций являются:

  • Размещением из n элементов по k называется упорядоченный набор из k различных элементов некоторого n-элементного множества.
  • Перестановкой из n элементов (например чисел 1, 2, … n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n.
  • Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.
  • Композицией числа n называется всякое представление n в виде упорядоченной суммы целых положительных чисел.
  • Разбиением числа n называется всякое представление n в виде неупорядоченной суммы целых положительных чисел.

Примеры комбинаторных задач:

  1. Сколькими способами можно разместить n предметов по m ящикам, чтобы выполнялись заданные ограничения?
  2. Сколько существует функций F{\displaystyle F} из m-элементного множества в n-элементное, удовлетворяющих заданным ограничениям?
  3. Сколько существует различных перестановок из 52 игральных карт?
    Ответ: 52! (52 факториал), то есть, 80 658 175 170 943 878 571 660 636 856 403 766 975 289 505 440 883 277 824 000 000 000 000 или примерно 8,0658 ⋅ 1067.
  4. При игре в кости бросаются две кости, и выпавшие очки складываются; сколько существует комбинаций, в которых сумма очков на верхних гранях равна двенадцати?
    Решение: Каждый возможный исход соответствует функции F:{1,2}→{1,2,3,4,5,6}{\displaystyle F:\{1,2\}\to \{1,2,3,4,5,6\}} (аргумент функции — это номер кости, значение — очки на верхней грани). Очевидно, что лишь 6 + 6 даёт нам нужный результат 12. Таким образом, существует лишь одна функция, ставящая в соответствие 1 число 6, и 2 число 6. Или, другими словами, существует всего одна комбинация, при которой сумма очков на верхних гранях равна двенадцати.

Разделы комбинаторики

Перечислительная комбинаторика

Перечислительная комбинаторика (или исчисляющая комбинаторика) рассматривает задачи о перечислении или подсчёте количества различных конфигураций (например, перестановок) образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.

Количество конфигураций, образованных несколькими манипуляциями над множеством, подсчитывается согласно правилам сложения и умножения.

Типичным примером задач данного раздела является подсчёт количества перестановок. Другой пример — известная Задача о письмах.

Структурная комбинаторика

К данному разделу относятся некоторые вопросы теории графов, а также теории матроидов.

Экстремальная комбинаторика

Примером этого раздела может служить следующая задача: какова наибольшая размерность графа, удовлетворяющего определённым свойствам.

Теория Рамсея

Теория Рамсея изучает наличие регулярных структур в случайных конфигурациях элементов. Примером утверждения из теории Рамсея может служить следующее:

в группе из 6 человек всегда можно найти трёх человек, которые либо попарно знакомы друг с другом, либо попарно незнакомы.

В терминах структурной комбинаторики это же утверждение формулируется так:

в любом графе с 6 вершинами найдётся либо клика, либо независимое множество размера 3.

Вероятностная комбинаторика

Этот раздел отвечает на вопросы вида: какова вероятность присутствия определённого свойства у заданного множества.

Топологическая комбинаторика

Топологическая комбинаторика применяет идеи и методы комбинаторики в топологии, при изучении дерева принятия решений, частично упорядоченных множеств, раскрасок графа и др.

Инфинитарная комбинаторика

Инфинитарная комбинаторика (англ.) — применение идей и методов комбинаторики к бесконечным (в том числе, несчётным) множествам.

Открытые проблемы

Комбинаторика, и в частности, теория Рамсея, содержит много известных открытых проблем, подчас с весьма несложной формулировкой. Например, неизвестно, при каком наименьшем N в любой группе из N человек найдутся 5 человек, либо попарно знакомых друг с другом, либо попарно незнакомых (хотя известно, что 49 человек достаточно).[1]

Исторический очерк

Джероламо Кардано написал математическое исследование игры в кости, опубликованное посмертно. Теорией этой игры занимались также Тарталья и Галилей. В историю зарождавшейся теории вероятностей вошла переписка заядлого игрока Шевалье де Мерэ с Пьером Ферма и Блезом Паскалем, где были затронуты несколько тонких комбинаторных вопросов. Помимо азартных игр, комбинаторные методы использовались (и продолжают использоваться) в криптографии — как для разработки шифров, так и для их взлома.

F:\{1,2\}\to \{1,2,3,4,5,6\}

Блез Паскаль много занимался биномиальными коэффициентами и открыл простой способ их вычисления: «треугольник Паскаля». Хотя этот способ был уже известен на Востоке (примерно с X века), Паскаль, в отличие от предшественников, строго изложил и доказал свойства этого треугольника. Наряду с Лейбницем, он считается основоположником современной комбинаторики. Сам термин «комбинаторика» придумал Лейбниц, который в 1666 году (ему было тогда 20 лет) опубликовал книгу «Рассуждения о комбинаторном искусстве». Правда, термин «комбинаторика» Лейбниц понимал чрезмерно широко, включая в него всю конечную математику и даже логику[2]. Ученик Лейбница Якоб Бернулли, один из основателей теории вероятностей, изложил в своей книге «Искусство предположений» (1713) множество сведений по комбинаторике.

В этот же период формируется терминология новой науки. Термин «сочетание» (combination) впервые встречается у Паскаля (1653, опубликован в 1665 году). Термин «перестановка» (permutation) употребил в указанной книге Якоб Бернулли (хотя эпизодически он встречался и раньше). Бернулли использовал и термин «размещение» (arrangement).

После появления математического анализа обнаружилась тесная связь комбинаторных и ряда аналитических задач. Абрахам де Муавр и Джеймс Стирлинг нашли формулы для аппроксимации факториала.[3]

Окончательно комбинаторика как самостоятельный раздел математики оформилась в трудах Эйлера. Он детально рассмотрел, например, следующие проблемы:

Кроме перестановок и сочетаний, Эйлер изучал разбиения, а также сочетания и размещения с условиями.

Комбинаторика в языкознании

Комбинаторика (языкознание) — это свойство единиц языка и соответствующих им единиц речи вступать в синтагматические отношения, то есть в отношения сочетаемости.

См. также

Примечания

Литература

  • Андерсон, Джеймс.  Дискретная математика и комбинаторика = Discrete Mathematics with Combinatorics. — М.: «Вильямс», 2006. — С. 960. — ISBN 0-13-086998-8.
  • Виленкин Н. Я.  Популярная комбинаторика. — М.: Наука, 1975.
  • Ерош И. Л. Дискретная математика. Комбинаторика — СПб.: СПбГУАП, 2001. — 37 c.
  • Липский В.  Комбинаторика для программиста. — М.: Мир, 1988. — 213 с.
  • Раизер Г. Дж.  Комбинаторная математика. — пер. с англ. — М., 1966.
  • Райгородский А. М.  Линейно-алгебраические и вероятностные методы в комбинаторике. — Летняя школа «Современная математика». — Дубна, 2006.
  • Рейнгольд Э., Нивергельт Ю., Део Н.  Комбинаторные алгоритмы. Теория и практика. — М.: Мир, 1980. — 476 с.
  • Риордан Дж.  Введение в комбинаторный анализ. — пер. с англ. — М., 1963.
  • Стенли Р.  Перечислительная комбинаторика = Enumerative Combinatorics. — М.: «Мир», 1990. — С. 440. — ISBN 5-03-001348-2.
  • Стенли Р.  Перечислительная комбинаторика. Деревья, производящие функции и симметрические функции = Enumerative Combinatorics. Volume 2. — М.: «Мир», 2009. — С. 767. — ISBN 978-5-03-003476-8.

Ссылки

Комбинаторика — основные понятия и формулы с примерами

Комбинаторика — раздел математики. Основные понятия и формулы комбинаторики как науки применяются во всех сферах жизни.

Неудивительно, что она включена в программу 11 класса, а также во вступительные испытания во многих ВУЗах РФ. Ее основы лежат в прикладном искусстве многих сфер деятельности человека.

Ее история насчитывает более 6 веков. Первые комбинаторные задачи появились в трудах философов и математиков Средневековья.

Представители того научного мира пытались найти методы решения таких задач, их базовые правила и понятия, утвердить уникальные формулы и уравнения для тех, кто ещё не встречался с ними. Такая информация в наше время называется информацией «для чайников».

Попытаемся разобраться в аспектах этой области науки: каковы элементы, свойства, правила, методы и основное ее применение в нашей жизни? Конечно, всю область в одной статье невозможно охватить. Поэтому ниже будет представлено всё самое основное.

Что такое комбинаторика в математике

Суть этого термина дают книги прошлых лет: это раздел математики, занимающийся операциями со множеством элементов.

В интернете есть учебники по информатике и математике для детей, школьников, сборники материалов и задач для начинающих, где в доступном виде объяснена «занимательная» комбинаторика. Нужно твердо выяснить, как решать подобные задачи.

В младших классах задачи на эту тему решают на дополнительных кружках, а в школах с углубленным изучением математики — на основных уроках. К тому же, задачи по комбинаторике включены в олимпиады всех уровней.

Основные понятия

Их несколько:

  1. Элемент – любой объект или явление, входящий в искомое множество.
  2. Сочетание – подмножества, находящиеся в произвольном порядке в исходном множестве.
  3. Перестановка – элементы во множестве находятся в строго определенном порядке.
  4. Размещение – упорядоченные подмножества в исходном множестве.

Правило произведения

Является одним из основных правил при решении таких задач и звучит так:

При выборе элемента А из n способов и выборе элемента В из m способов верно утверждение, что выбрать пару А и В одновременно можно n*m способами.

Рассмотрим на конкретных примерах.

Задача №1.

В коробке лежит 2 мяча и 6 скакалок. Сколько существует способов достать 1 мяч и 1 скакалку?

Ответ прост: 2 * 6 = 12.

Задача №2.

Есть 1 кубик, 2 шарика, 3 цветка и 4 конфеты. Сколькими способами можно вытянуть кубик, шарик, цветок и конфету?

Решение аналогично: 1 * 2 * 3 * 4 = 24.

Причем левую часть можно записать гораздо проще: 4!

! в данном случае является не знаком препинания, а факториалом. С помощью него можно вычислить более сложные варианты и решать трудные задачи (существуют разные формулы, но об этом позже).

Задача №3.

Сколько двузначных чисел можно составить из 2 цифр?

Ответ: 2! = 2.

Задача №4.

Сколько десятизначных чисел можно составить из 10 цифр?

10! = 3628800.

Правило суммы

Тоже является базовым правилом комбинаторики.

Если А можно выбрать n раз, а В — m раз, то А или В можно выбрать (n + m) раз.

Задача №5.

В коробке лежат 5 красных, 3 желтых, 7 зеленых, 9 черных карандашей. Сколько есть способов вытащить 1 любой карандаш?

Ответ: 5 + 3 + 7 + 9 = 24.

Сочетания с повторениями и без повторений

Под этим термином понимают комбинации в произвольном порядке из множества n по m элементов.

Число сочетаний равно количеству таких комбинаций.

Задача №6.

В коробке находится 4 разных фрукта. Сколькими способами можно достать одновременно 2 разных фрукта?

Решение простое:

Где 4! – комбинация из 4 элементов.

С повторениями чуть сложней, комбинации считаются по такой формуле:

Задача №7.

Возьмем тот же самый случай, но при условии, что один фрукт возвращается в коробку.

В этом случае:

Размещения с повторениями и без повторений

Под этим определением понимают набор m элементов из множества n элементов.

Задача №8.

Из 3 цифр надо выбрать 2, чтобы получались разные двузначные числа. Сколько вариантов?

Ответ прост:

А как же быть с повторениями? Здесь каждый элемент может размещаться несколько раз! В таком случае общая формула будет выглядеть следующим образом:

Задача №9.

Из 12 букв латинского алфавита и 10 цифр натурального ряда надо найти все варианты составления автомобильного кода региона.

Решение:

Перестановки с повторениями и без повторений

Под этим термином понимают все возможные комбинации из n элементного множества.

Задача №10.

Сколько возможных пятизначных чисел можно составить из 5цифр? А шестизначных из 6 цифр? Семизначных из 7 цифр?

Решения, согласно вышеприведенной формуле, следующие:

5! = 120;

6! = 720;

7! = 5040.

А как же быть с повторениями? Если в таком множестве есть одинаковые по своей значимости элементы, то перестановок будет меньше!

Задача №11.

В коробке есть 3 одинаковых карандаша и одна ручка. Сколько перестановок можно сделать?

Ответ прост: 4! / (3! * 1!) = 4.

Комбинаторные задачи с решениями

Примеры всех возможных типов задач с решениями были даны выше. Здесь попробуем разобраться с более сложными случаями, встречающимися в нашей жизни.

Типы задач Что требуется найти Методы решения
Магический квадрат Фигура, в которой сумма чисел в рядах и столбцах должна быть одинакова (его разновидность – латинский квадрат). Рекуррентные соотношения. Решается подобная же задача, но с гораздо меньшим множеством элементов по известным правилам и формулам.
Задача размещения Стандартная производственная задача (например, в лоскутной технике) — найти возможные способы разложения количества продуктов в ячейки в определенном порядке. Включения и исключения. Как правило, применяется при доказательстве различных выражений.
Задачи про торговцев Суть — найти все возможные пути прохождения людей из пункта А в пункт В. Траектории. Для этого вида задач характерно геометрическое построение возможных способов решения.

Заключение

Стоит изучать эту науку, поскольку в век быстрой модернизации технологий потребуются специалисты, способные предоставить различные решения тех или иных практических задач.

Комбинаторика Википедия

Комбинато́рика (комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана с другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний (например, в генетике, информатике, статистической физике).

Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве».

Иногда под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов.

Примеры комбинаторных конфигураций и задач[ | ]

Для формулировки и решения комбинаторных задач используют различные модели комбинаторных конфигураций. Примерами комбинаторных конфигураций являются:

  • Размещением из n элементов по k называется упорядоченный набор из k различных элементов некоторого n-элементного множества.
  • Перестановкой из n элементов (например чисел 1, 2, … n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n.
  • Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.
  • Композицией числа n называется всякое представление n в виде упорядоченной суммы целых положительных чисел.
  • Разбиением числа n называется всякое представление n в виде неупорядоченной суммы целых положительных чисел.

Примеры комбинаторных задач:

  1. Сколькими способами можно разместить n предметов по m ящикам, чтобы выполнялись заданные ограничения?
  2. Сколько существует функций F{\displaystyle F} из m-элементного множества в n-элементное, удовлетворяющих заданным ограничениям?
  3. Сколько существует различных перестановок из 52 игральных карт?
    Ответ: 52! (52 факториал), то есть, 80 658 175 170 943 878 571 660 636 856 403 766 975 289 505 440 883 277 824 000 000 000 000 или примерно 8,0658 ⋅ 1067.
  4. При игре в кости бросаются две кости, и выпавшие очки складываются; сколько существует комбинаций, в которых сумма очков на верхних гранях равна двенадцати?
    Решение: Каждый возможный исход соответствует функции F

комбинаторика — Викисловарь

Морфологические и синтаксические свойства[править]

падеж ед. ч. мн. ч.
Им. комбинато́рика комбинато́рики
Р. комбинато́рики комбинато́рик
Д. комбинато́рике комбинато́рикам
В. комбинато́рику комбинато́рики
Тв. комбинато́рикой
комбинато́рикою
комбинато́риками
Пр. комбинато́рике комбинато́риках

ком-би-на-то́-ри-ка

Существительное, неодушевлённое, женский род, 1-е склонение (тип склонения 3a по классификации А. А. Зализняка).

Корень: -комбин-; суффиксы: -атор-ик; окончание: [Тихонов, 1996].

Произношение[править]

  • МФА: [kəm⁽ʲ⁾bʲɪnɐˈtorʲɪkə]

Семантические свойства[править]

Значение[править]
  1. матем. раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления) и отношения на них ◆ В этой главе подробно освещены комбинаторные числа, производящие функции, теорема Пойа, и другие темы комбинаторики.
  2. разг. совокупность сочетаний, перестановок, размещений элементов какого-либо множества ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
  1. математика
Гипонимы[править]

Родственные слова[править]

Этимология[править]

Происходит от нем. Kombinatorik, от Kombinator «комбинатор» и kombinieren «комбинировать, соединять», далее из combinare «связывать, сочетать», далее из cum (варианты co-, com-, con-) «с, вместе» + bini «по два; парой», далее из bis «дважды; вдвойне», далее из стар. dvis; из праиндоевр. *duwo «два».

Фразеологизмы и устойчивые сочетания[править]

Перевод[править]

Библиография[править]

Interrobang.svg Для улучшения этой статьи желательно:
  • Добавить примеры словоупотребления для всех значений с помощью {{пример}}
  • Добавить все семантические связи (отсутствие можно указать прочерком, а неизвестность — символом вопроса)
  • Добавить хотя бы один перевод для каждого значения в секцию «Перевод»

Морфологические и синтаксические свойства[править]

комбинаторика

Существительное.

Корень: --.

Произношение[править]

Семантические свойства[править]

Значение[править]
  1. матем. комбинаторика ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Ближайшее родство

Этимология[править]

От ??

Фразеологизмы и устойчивые сочетания[править]

Библиография[править]

Морфологические и синтаксические свойства[править]

комбинаторика

Существительное.

Корень: --.

Произношение[править]

Семантические свойства[править]

Значение[править]
  1. матем. комбинаторика ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Ближайшее родство

Этимология[править]

От ??

Фразеологизмы и устойчивые сочетания[править]

Библиография[править]

Морфологические и синтаксические свойства[править]

комбинаторика

Существительное.

Корень: --.

Произношение[править]

Семантические свойства[править]

Значение[править]
  1. матем. комбинаторика ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Ближайшее родство

Этимология[править]

От ??

Фразеологизмы и устойчивые сочетания[править]

Библиография[править]

Морфологические и синтаксические свойства[править]

комбинаторика

Существительное.

Корень: --.

Произношение[править]

Семантические свойства[править]

Значение[править]
  1. матем. комбинаторика ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Ближайшее родство

Этимология[править]

От ??

Фразеологизмы и устойчивые сочетания[править]

Библиография[править]

Морфологические и синтаксические свойства[править]

комбинаторика

Существительное.

Корень: --.

Произношение[править]

Семантические свойства[править]

Значение[править]
  1. матем. комбинаторика ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Ближайшее родство

Этимология[править]

От ??

Фразеологизмы и устойчивые сочетания[править]

Библиография[править]

Морфологические и синтаксические свойства[править]

комбинаторика

Существительное.

Корень: --.

Произношение[править]

Семантические свойства[править]

Значение[править]
  1. матем. комбинаторика ◆ Отсутствует пример употребления (см. рекомендации).
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Ближайшее родство

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *