Применение графена — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2019; проверки требует 1 правка.Применение графена находится на начальной стадии научно-исследовательских разработок и исследований. В перспективе графеновая электроника рассматривается как основное применение графена. Отсутствие запрещённой зоны позволяет рассматривать графен как идеальный материал для детектирования инфракрасного света и терагерцового излучения.
В 2011 году в журнале Science была опубликована работа[1], где на основе графена предлагалась схема двумерного метаматериала (может быть востребован в оптике и электронике).
Коробчатая графеновая наноструктура (КГНС), представляющая собой многослойную систему расположенных вдоль поверхности параллельных полых наноканалов с четырёхугольным поперечным сечением, может служить основой для создания сверхчувствительных датчиков, высокоэффективных каталитических ячеек, наноканалов для манипулирования-секвенирования ДНК, высокоэффективных теплоотводящих поверхностей, аккумуляторов с улучшенными характеристиками, наномеханических резонаторов, каналов умножения электронов в приборах эмиссионной наноэлектроники, сорбентов большой ёмкости для безопасного хранения водорода.
В 2014 году исследователи из Массачусетского технологического института разработали технологию, позволяющую делать в листах графена отверстия определённого диаметра и получать сверхтонкие фильтры для высокой степени опреснения и очистки воды[2]. В феврале 2018 года специалисты Объединения научных и прикладных исследований Австралии (CSIRO) предложили дешёвый способ массового и недорогого производства подходящих листов графена. По мнению представителей CSIRO, разработанная технология позволит отказаться от дорогостоящих и многоступенчатых методов очистки воды и способна привести к прорыву в решении проблемы нехватки питьевой воды [3].
В медицинских исследованиях графен демонстрирует противораковые свойства. Команда исследователей из Университета Манчестера в Великобритании во главе с Майклом Лизанти (Michael Lisanti) опубликовали статью в журнале «Oncotarget», посвящённую тому, как окись графена выборочно поражает стволовые клетки, относящиеся к категории раковых[4][5]. Во время исследования учёные оценили эффекты графена при шести разных видах рака: молочной железы, лёгких, поджелудочной железы, простаты, яичников и головного мозга. Во всех случаях получен положительный результат. Предполагается, что графен может быть эффективен при широком диапазоне опухолей.
Термоэлектрический эффект для графена превосходит резистивный омический нагрев, что в перспективе позволит создание на его базе схем, не требующих охлаждения
Пневматические аккумуляторы
Графен — Википедия
Графе́н (англ. graphene) — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом. Атомы углерода находятся в sp²-гибридизации и соединены посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость слоистого графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью[4] и рекордно большой теплопроводностью[5]. Высокая подвижность носителей заряда, которая оказывается максимальной среди всех известных материалов (при той же толщине), делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники[6] и возможную замену кремния в интегральных микросхемах.
Один из существующих в настоящее время способов получения графена в условиях научных лабораторий [7][8] основан на механическом отщеплении или отшелушивании слоёв графита от высокоориентированного пиролитического графита. Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура. Другие известные способы — метод термического разложения подложки карбида кремния[9][10] и xимическое осаждение из газовой фазы — гораздо ближе к промышленному производству. С 2010 года доступны листы графена метрового размера, выращенные с помощью последнего метода[11].
Из-за особенностей энергетического спектра носителей графен проявляет специфические[12], в отличие от других двумерных систем, электрофизические свойства. Графен был первым полученным элементарным двумерным кристаллом, но впоследствии были получены другие материалы силицен, фосфорен, германен.
За «передовые опыты с двумерным материалом — графеном» Андрею Константиновичу Гейму и Константину Сергеевичу Новосёлову была присуждена Нобелевская премия по физике за 2010 год[13][14]. В 2013 году Михаил Иосифович Кацнельсон награждён премией Спинозы за разработку базовой концепции и понятий, которыми оперирует наука в области графена[15].
Графен — первый известный истинно двумерный кристалл[1]. В отличие от более ранних попыток создания двумерных проводящих слоёв, к примеру, двумерный электронный газ (ДЭГ), из полупроводников методом управления шириной запрещённой зоны, электроны в графене локализованы в плоскости гораздо сильнее.
Многообразие химических и физических свойств обусловлено кристаллической структурой и π-электронами атомов углерода, составляющих графен. Широкое изучение материала в университетах и исследовательских лабораториях связано, прежде всего, с доступностью и простотой его приготовления с использованием механического расщепления кристаллов графита [1]. Материалом, проявившим свои уникальные свойства — высокую проводимость и теплопроводность, прочность[16], гидрофобность, — заинтересовались не только учёные, но и технологи, а также связанные с производством процессоров корпорации IBM[17], Samsung[18]. Принцип работы транзисторов из графена существенно отличается от принципа работы традиционных полевых кремниевых транзисторов, так как графен имеет запрещённую зону нулевой ширины, и ток в графеновом канале течёт при любом приложенном затворном напряжении, поэтому развиваются иные подходы к созданию транзисторов[19].
Качество графена для транспортных измерений характеризуется таким параметром, как подвижность, который характеризует силу отклика носителей тока на приложенное электрическое поле. Двумерный электронный газ в полупроводниковых гетероструктурах обладает рекордными подвижностями при температурах ниже 1 K. Графен уступает ДЭГ в GaAs при столь низких температурах, но, так как электрон-фононное рассеяние в графене намного слабее, подвижность достигает 250 000 см
Уникальные электронные свойства графена проявляются и в оптике. В частности, графен позволяет глазом «увидеть» постоянную тонкой структуры α, сравнивая интенсивность света, прошедшего через закрытую графеном апертуру и прошедшего свободно. Коэффициент прохождения для графена в области видимого света хорошо описывается простой формулой T ≈ 1−πα ≈ 97,7 %[20]. Постоянная тонкой структуры оказывается связана с величиной кванта сопротивления, измеряемого в Квантовом эффекте Холла. В этом случае точность её настолько высока, что позволяет использовать графен для создания эталона сопротивления, RK = h/e2 = 25 812,807557(18) Ом[21]. Связь между графеном и постоянной тонкой структуры оказывается даже глубже, поскольку динамика электронного газа в графене определяется релятивистским уравнением квантовой механики — уравнением Дирака, — и по существу является твердотельным аналогом (2+1)-мерной квантовой электродинамики. Несколько аналогичных эффектов, предсказанных для квантовой электродинамики можно наблюдать в графене[22].
Несмотря на сильное взаимодействие света с графеном[23], отыскать осаждённые плёнки графена на подложке кремния оказывается трудной задачей. Существуют предпочтительные толщины оксида кремния (90 нм, 290 нм для длин волн видимого света), которые дают максимальный контраст, что существенно упрощает поиск плёнок[24]. Хотя тренированный человек достаточно легко отличает монослой графена от двухслойного графена по контрасту, хорошим доказательством служит также рамановская спектроскопия
Методы роста графена на больших площадях отличаются от механических методов однородностью и чистотой процесса. Газофазная эпитаксия углерода на медную фольгу (CVD-графен) позволяет создавать очень однородные поликристаллические плёнки графена с размерами порядка метров[11]. Размер монокристаллов графена составляет сотни микрон. Меньшие кристаллиты получаются при термическом разложении карбида кремния.
Самый непроизводительный метод механического расщепления оказывается наиболее приспособленным для получения высококачественных кристаллов графена, хотя CVD-графен по качеству приближается к нему. Как механический метод, так и выращивание на поверхности другого материала обладают существенными недостатками, в частности, малой производительностью, поэтому технологи изобретают химические методы получения графена из графита для получения из монокристалла графита плёнки, состоящей преимущественно из графеновых слоёв, что существенно продвинет графен на рынке.
Благодаря сильным углеродным ковалентным связям графен инертен по отношению к кислотам и щелочам при комнатной температуре. Однако присутствие определённых химических соединений в атмосфере может приводить к легированию графена, что нашло применение в обладающих рекордной чувствительностью сенсорах — детекторах отдельных молекул[26]. Для химической модификации с образованием ковалентных связей графена необходимы повышенные температуры и обладающие сильной реакционной способностью вещества. Например, для создания гидрогенизированного графена нужно наличие протонов в плазме газового разряда[27], для создания фторографена — сильного фторирующего агента дифторида ксенона[28]. Оба этих материала показали диэлектрические свойства, то есть их сопротивление растёт с понижением температуры. Это обусловлено формированием запрещённой зоны.
Количество публикаций, посвящённых графену, растёт год от года, превысив 10000 в 2012 году[29]. Несмотря на то, что треть статей (доля от общего числа составляет 34 %) публикуется научными учреждениями и фирмами из Европы, главными держателями патентов (из приблизительно 14000 патентов на июль 2014 года) выступают фирмы и университеты Китая (40 %), США (23 %) и Южной Кореи (21 %), а европейская доля составляет 9 %[30]. Среди фирм и университетов Самсунг является лидером по количеству патентов[31].
Рис. 1. Идеальная кристаллическая структура графена представляет собой гексагональную кристаллическую решётку.Графен является двумерным кристаллом, состоящим из одиночного слоя атомов углерода, собранных в гексагональную решётку. Его теоретическое исследование началось задолго до получения реальных образцов материала, поскольку из графена можно собрать трёхмерный кристалл графита. Графен является базой для построения теории этого кристалла. Графит является полуметаллом, и, как было показано[32] в 1947 году Ф. Уоллесом, в зонной структуре графена также отсутствует запрещённая зона, причём в точках соприкосновения валентной зоны и зоны проводимости энергетический спектр электронов и дырок линеен как функция волнового вектора. Такого рода спектром обладают безмассовые фотоны и ультрарелятивистские частицы, а также нейтрино. Поэтому говорят, что эффективная масса электронов и дырок в графене вблизи точки соприкосновения зон равна нулю. Но здесь стоит заметить, что, несмотря на сходство фотонов и безмассовых носителей, у графена есть несколько существенных отличий, делающих носители в нём уникальными по своей физической природе, а именно: электроны и дырки являются фермионами, и они заряжены. В настоящее время аналогов для этих безмассовых заряженных фермионов среди известных элементарных частиц нет.
Несмотря на такие специфические особенности, до 2005 года[12] экспериментального подтверждения эти выводы не получили, поскольку не удавалось получить графен. Кроме того, ещё раньше было теоретически показано, что свободную идеальную двумерную плёнку получить невозможно из-за нестабильности относительно сворачивания или скручивания[33][34][35]. Тепловые флуктуации приводят к плавлению двумерного кристалла при любой конечной температуре.
Интерес к графену появился снова после открытия углеродных нанотрубок, поскольку вся первоначальная теория графена строилась на простой модели развёртки цилиндра нанотрубки. Поэтому теория для графена в приложении к нанотрубкам хорошо проработана.
Попытки получения графена, прикреплённого к другому материалу, начались с экспериментов, использующих простой карандаш, и продолжились с использованием атомно-силового микроскопа[36] для механического удаления слоёв графита, но не достигли успеха. Использование графита с внедрёнными (интеркалированный графит — соединения, подобные графитиду калия KC8)[33] в межплоскостное пространство чужеродными атомами (используется для увеличения расстояния между соседними слоями и их расщепления) тоже не привело к результату.
В 2004 году британскими учёными российского происхождения Андреем Геймом и Константином Новоселовым из Манчестерского университета была опубликована работа в журнале Science[7], где сообщалось о получении графена на подложке окислённого кремния. Таким образом, стабилизация двумерной плёнки достигалась благодаря наличию связи с тонким слоем диэлектрика SiO2 по аналогии с тонкими плёнками, выращенными с помощью МПЭ. Впервые были измерены проводимость, эффект Шубникова — де Гааза, эффект Холла для образцов, состоящих из плёнок углерода атомарной толщины.
Метод отшелушивания является довольно простым и гибким, поскольку позволяет работать со всеми слоистыми кристаллами, то есть теми материалами, которые представляются как слабосвязанные (по сравнению с силами в плоскости) слои двумерных кристаллов. В последующей работе[8] авторы показали, что его можно использовать для получения других двумерных кристаллов: BN, MoS2, NbSe2, Bi2Sr2CaCu2Ox.
В 2011 году ученые из Национальной радиоастрономической обсерватории объявили, что им, вероятно, удалось зарегистрировать графен в космическом пространстве (планетарные туманности в Магеллановых облаках)[37].
Кусочки графена получают при механическом воздействии на высокоориентированный пиролитический графит или киш-графит[38]. Сначала плоские куски графита помещают между липкими лентами (скотч) и расщепляют раз за разом, создавая достаточно тонкие слои (среди множества полученных плёнок могут попадаться одно- и двуслойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита прижимают к подложке окислённого кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм)[8]. Найденные с помощью оптического микроскопа слабо различимые (при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. Толщину можно определить с помощью атомно-силового микроскопа (она может варьироваться в пределах 1 нм для графена) или используя комбинационное рассеяние. Используя стандартную электронную литографию и реактивное плазменное травление, задают форму плёнки для электрофизических измерений.
Кусочки графена также можно приготовить из графита, используя химические методы[39]. Сначала микрокристаллы графита подвергаются действию смеси серной и азотной кислот. Графит окисляется, и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действием октадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита[40].
Один из химических методов получения графена основан на восстановлении оксида графита. Первое упоминание о получении хлопьев восстановленного монослойного оксида графита (оксида графена) было уже в 1962 году[41].
Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD)[42] и рост при высоком давлении и температуре (англ. HPHT)[43]. Последний можно использовать для получения плёнок большой площади.
Большую площадь графена растят на подложках карбида кремния SiC(0001)[9][10]. Графитовая плёнка формируется при термическом разложении поверхности подложки SiC, причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C-стабилизированная или Si-стабилизированная поверхность — в первом случае качество плёнок выше. Этот метод получения графена гораздо ближе к промышленному производству. В работах[44][45] та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.
Идеальный графен состоит исключительно из шестиугольных ячеек. Присутствие пяти- и семиугольных ячеек будет приводить к различного рода дефектам. Например, дефект Стоуна — Уэйлса возникает в случае пересоединения углеродных связей и в результате формируются два пятиугольных цикла и два семиугольных[46].
Наличие пятиугольных ячеек приводит к сворачиванию атомной плоскости в конус. Структура с 12 такими дефектами известна под названием фуллерен. Присутствие семиугольных ячеек приводит к образованию седловидных искривлений атомной плоскости. Комбинация этих дефектов и нормальных ячеек может приводить к образованию различных форм поверхности.
На основе графена можно сконструировать баллистический транзистор. В марте 2006 года группа исследователей из технологического института штата Джорджия заявила, что ими был получен полевой транзистор на графене выращенном на подложке карбида кремния (то есть на большой площади), а также квантово-интерференционный прибор, то есть измерили слабую локализацию и универсальные флуктуации кондактанса[en][47]. Данный транзистор обладает большим током утечки, то есть нельзя разделить два состояния с закрытым и открытым каналом[48].
Использовать напрямую графен при создании полевого транзистора без токов утечки не представляется возможным из-за отсутствия запрещённой зоны в этом материале, поскольку нельзя добиться существенной разности в сопротивлении при любых приложенных к затвору напряжениях, то есть не получается задать два состояния, пригодных для двоичной логики: проводящее и непроводящее. Сначала нужно как-то создать запрещённую зону достаточной ширины при рабочей температуре, чтобы термически возбуждённые носители давали малый вклад в проводимость. Один из возможных способов предложен в работе (см. ссылку)[6]. В этой статье предлагается создать тонкие полоски графена с такой шириной, чтобы благодаря квантово-размерному эффекту ширина запрещённой зоны была достаточной для перехода в диэлектрическое состояние (закрытое состояние) прибора при комнатной температуре (28 мэВ соответствует ширине полоски 20 нм). Благодаря высокой подвижности (значительно большей при комнатной температуре, чем подвижность в кремнии, используемом в микроэлектронике) 104 см²·В−1·с−1 быстродействие такого транзистора будет заметно выше. Впрочем при уменьшении размеров до определённого размера (порядка 10 нм) подвижность должна уменьшаться в связи с дефектами графена на границах, что и было продемонстрировано в экспериментах, но при дальнейшем уменьшении размеров теоретические исследования говорят о достижении баллистического транспорта и соответственно росте подвижности и быстодействия. Графеновые транзисторы с коротким каналом (около 50 нм) обладают частотой отсечки 427 ГГц[49].
В статье[50] и продемострировали использование графена в качестве очень чувствительного сенсора для обнаружения отдельных молекул химических веществ, присоединённых к поверхности плёнки. В этой работе исследовались такие вещества, как NH3, CO, H2O, NO2. Сенсор размером 1 × 1 мкм2 использовался для детектирования присоединения отдельных молекул NO2 к графену. Принцип действия этого сенсора заключается в том, что разные молекулы выступают донорами и акцепторами, что в свою очередь ведёт к изменению сопротивления графена. В работе[51] теоретически исследуется влияние различных использованных в отмеченном выше эксперименте примесей на проводимость графена. В работе[52] было показано, что примеси, молекулы которых имеют магнитный момент (неспаренный электрон), обладают более сильными легирующими свойствами.
Высокая подвижность носителей тока, гибкость и низкая плотность позволяет использовать графен в ещё одной перспективной области — использование для изготовления электродов в ионисторах (суперконденсаторах). Опытные образцы ионисторов на графене имеют удельную энергоёмкость 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30—40 Вт·ч/кг)[53] и впоследствии можно достичь 250 Вт·ч/кг[54].
Отсутствие запрещённой зоны имеет преимущества над полупроводниками в инфракрасной области спектра, что продемонстрировали при создании новых типов светодиодов и фотодетекторов на основе графена (LEC)[55][56].
Физические свойства нового материала можно изучать по аналогии с другими подобными материалами. В настоящее время экспериментальные и теоретические исследования графена сосредоточены на стандартных свойствах двумерных систем: проводимости, квантовом эффекте Холла, слабой локализации и других эффектах, исследованных ранее в двумерном электронном газе.
Теория[править | править код]
В этом параграфе кратко описываются основные положения теории, некоторые из которых получили экспериментальное подтверждение, а некоторые ещё ждут верификации.
Кристаллическая структура[править | править код]
Рис. 3. Изображение гексагональной решётки графена. Жёлтым цветом показана элементарная ячейка, красным и зелёным цветами показаны узлы различных подрешёток кристалла. e1 и e2 — вектора трансляцийКристаллическая решётка графена представляет собой плоскость, состоящую из шестиугольных ячеек, то есть является двумерной гексагональной кристаллической решёткой. Для такой решётки известно, что её обратная решётка тоже будет гексагональной. В элементарной ячейке кристалла находятся два атома, обозначенные A и B. Каждый из этих атомов при сдвиге на вектора трансляций (любой вектор вида rA=me1+ne2{\displaystyle \mathbf {r} _{A}=m\mathbf {e} _{1}+n\mathbf {e} _{2}}, где m и n — любые целые числа) образует подрешётку из эквивалентных ему атомов, то есть свойства кристалла независимы от точек наблюдения, расположенных в эквивалентных узлах кристалла. На рисунке 3 представлены две подрешётки атомов, закрашенные разными цветами: зелёным и красным.
Расстояние между ближайшими атомами углерода в шестиугольниках, обозначенное a0{\displaystyle a_{0}}, составляет 0,142 нм. Постоянную решётки (a{\displaystyle a}) можно получить из простых геометрических соображений. Она равна a=3a0{\displaystyle a={\sqrt {3}}a_{0}}, то есть 0,246 нм. Если определить за начало координат точку, соответствующую узлу кристаллической решётки (подрешётка A), из которой начинаются векторы трансляций e1,e2{\displaystyle \mathbf {e} _{1},\,\mathbf {e} _{2}} с длиной векторов, равной a,{\displaystyle a,} и ввести двумерную декартову систему координат в плоскости графена с осью ординат, направленной вниз, и осью абсцисс, направленной по отрезку, соединяющему соседние узлы A и B, то тогда координаты концов векторов трансляций, начинающихся из начала координат, запишутся в виде[32]:
- e1=[3a/2,−a/2],e2=[0,a],(1.1){\displaystyle \mathbf {e} _{1}=[{\sqrt {3}}a/2,-a/2],\,\mathbf {e} _{2}=[0,a],\qquad (1.1)}
а соответствующие им векторы обратной решётки:
- g1=[2/(3a),0],g2=[1/(3a),1/a](1.2){\displaystyle \mathbf {g} _{1}=[2/({\sqrt {3}}a),0],\,\mathbf {g} _{2}=[1/({\sqrt {3}}a),1/a]\qquad (1.2)}
(без множителя 2π{\displaystyle 2\pi }). В декартовых координатах положение ближайших к узлу подрешётки A (все атомы которой на рисунке 3 показаны красным) в начале координат атомов из подрешётки B (показаны соответственно зелёным цветом) задаётся в виде:
- [a/3,0],[−a/(23),a/2],[−a/(23),−a/2].(1.3){\displaystyle [a/{\sqrt {3}},0],\,[-a/(2{\sqrt {3}}),a/2],\,[-a/(2{\sqrt {3}}),-a/2].\qquad (1.3)}
Зонная структура[править | править код]
Кристаллическая структура материала находит отражение во всех его физических свойствах. В особенности сильно от порядка, в котором расположены атомы в кристаллической решётке, зависит зонная структура кристалла.
Рис. 4: Ближайшие атомы в окружении центрального узла (A) решётки. Красная пунктирная окружность соответствует ближайшим соседям из той же самой подрешётки кристалла (A), а зелёная окружность соответствует атомам из второй подрешётки кристалла (B)Зонная структура графена рассчитана в статье[32] в приближении сильно связанных электронов. На внешней оболочке атома углерода находятся 4 электрона, три из которых образуют связи с соседними атомами в решётке при перекрывании sp²-гибридизированных орбиталей, а оставшийся электрон находится в 2pz-состоянии (именно это состояние отвечает в графите за образование межплоскостных связей, а в графене — за образование энергетических зон). В приближении сильно связанных электронов полная волновая функция всех электронов кристалла записывается в виде суммы волновых функций электронов из разных подрешёток
- ψ=ϕ1+λϕ2,(2.1){\displaystyle \psi =\phi _{1}+\lambda \phi _{2},\qquad (2.1)}
где коэффициент λ — некий неизвестный (вариационный) параметр, который определяется из минимума энергии. Входящие в уравнение волновые функции ϕ1{\displaystyle \phi _{1}} и ϕ2{\displaystyle \phi _{2}}
10 способов применения графена, которые изменят вашу жизнь
Он прочный, он гибкий и он уже здесь: после долгих лет исследований и экспериментов графен приходит в нашу жизнь, а именно – в продукты, которыми мы пользуемся каждый день. В скором времени графен изменит мир смартфонов, аккумуляторов, спортивной экипировки, суперкаров и сверхпроводников. Свойства этого материала настолько невероятные, что некоторые люди даже считают, что графен достался нам от инопланетных кораблей, оставленных на нашей планете задолго до появления человечества.
Это, конечно же, фантастика, но потенциал графена не может не рождать подобные теории заговора. Прошло более 60 лет с тех пор, как ученые и производители электроники впервые попытались раскрыть всю мощь нового материала, однако его практическое применение стало реальным только сейчас. Новости о технологических прорывах в этой области не прекращаются, и очередной всплеск инфоповодов по этой теме состоялся в ходе недавней выставки мобильной электроники MWC 2018. Далее речь пойдет о 10 способах использования графена, которые изменят вашу жизнь в обозримом будущем.
Миниатюрные УФ-сканеры
Обычная одежда спасает нас от вредных ультрафиолетовых лучей, но зачастую этого бывает недостаточно, особенно в жарких солнечных странах. Проблема будет решена с помощью небольшого гибкого УФ-сканера, который может крепиться на кожу, как обычный пластырь, либо изначально встраиваться в одежду. Когда этот сканер определит, что вы слишком долго находитесь под прямыми солнечными лучами, он отправит соответствующее уведомление на смартфон, предупредив вас об опасности.
Умные стельки для атлетов
Производители обуви и спортивных товаров также делают большую ставку на графен. Сегодня уже существуют носки и стельки, распознающие силу давления в той или иной области подошвы. Но подавляющее большинство таких продуктов оснащены всего несколькими датчиками, графен позволяет разместить более 100 датчиков, которые никак не повлияют на вес обуви. Прототипы высокотехнологичных стелек существуют уже сегодня, они изготовлены из специальной пены и измеряют давление с точностью до миллиграмма.
Графеновый крио-кулер для охлаждения базовых станций 5G
Всем модулям беспроводной связи при увеличении объема передаваемых данных требуется все больше охлаждения, иначе оборудование перегреется. Таким образом, многократное повышение пропускной способности в приближающихся 5G-сетях. Разработанный в Швеции компактный охлаждающий насос способен понижать температуру базовых станций вплоть до -150 градусов, поддерживая стабильный сигнал.
Аудиотехника
Хотя впервые графен был получен в Университете Манчестера, исследования данного материала ведутся по всему миру, а наибольшее число патентов по использованию графена принадлежит Китаю. Неудивительно, что крупнейший производитель электроники в этой стране стал одним из первых брендов, внедривших графен в свои продукты. Так, Xiaomi Mi Pro HD являются наушниками с графеновой диафрагмой, которая позволяет передавать более громкий, чистый и насыщенный звук. Также у Xiaomi есть терапевтический пояс PMA A10 из ткани, покрытой графеном.
Самые эффективные в мире солнечные батареи
В Италии ученые разрабатывают солнечную батарею на основе графена и органических кристаллов. Такая технология позволяет делать солнечные ячейки более крупными, что повышает эффективность сбора энергии и удешевляет производство в 4 раза.
Графеновые самолеты
В авиации вес – это все, от него напрямую зависит стоимость полета. Именно поэтому Ричард Брэнсон (и другие, менее известные люди) предсказывают полный переход коммерческих авиакомпаний на гораздо более легкий и прочный графен уже в ближайшее десятилетие. И это не просто слова – к примеру, Airbus уже не первый год активно занимается этим направлением.
Чехлы для смартфонов
Чехлы со встроенной батареей так и не прижились на рынке, а проблема быстро разряжающихся мобильных аккумуляторов никуда не делась. Чехлы с задней панелью из графена смогут намного эффективнее охлаждать смартфон, прибавляя до 20% ко времени работы батареи в вашем мобильном устройстве.
Супертонкие электронные книги
На MWC 2017 компания FlexEnable продемонстрировала построенную на основе графена полноцветную пиксельную матрицу для энергоэффективных дисплеев и дисплеев с электронными чернилами. Такие экраны будут иметь толщину обычной бумаги. К тому же, эти матрицы будут гибкими, что избавляет от необходимости использования толстого защитного стекла.
Автомобили
Графен раскрывает широкие перспективы для автомобилестроения, в частности для электромобилей. Дело в том, что с изготовленные из графена транспортные средства обладают меньшим весом и большей жесткостью кузова, что позволяет им быстрее ускоряться и расходовать значительно меньше электроэнергии.
Сверхбыстрые зарядки
Что, если бы вы могли зарядить свой смартфон на 100% за 5 минут? Именно столько времени требуется зарядному устройству от Zap & Go. И хотя тестовый прототип имел емкость всего 750 мАч, этот результат не может не впечатлять. А в следующем году инженеры компании обещают снизить этот показатель до 15-20 секунд. Тем временем, в Huawei разработали обычные литий-ионные батареи, которые благодаря применению графена могут работать на температурах до 60оС, что на 10 превышает показатель стандартных аккумуляторов на 10 градусов, что продлевает срок эксплуатации батареи почти в 2 раза.
Графен, его производство, свойства и применение в электронике и др.
Графен, его производство, свойства и применение в электронике и др.
Графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится.
Описание графена
Свойства и преимущества графена
Физические свойства графена
Получение графена
Получение графена в домашних условиях
Применение графена
Другие формы углерода: графен, усиленный – арматурный графен, карбин, алмаз, фуллерен, углеродные нанотрубки, “вискерсы”.
Описание графена:
Графен – это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Атомы углерода в графене соединяются между собой sp2-связями. Графен в буквальном смысле представляет собой материю, ткань.
Углерод имеет множество аллотропов. Некоторые из них, например, алмаз и графит, известны давно, в то время как другие открыты относительно недавно (10-15 лет назад) – фуллерены и углеродные нанотрубки. Следует отметить, что известный многие десятилетия графит представляет собой стопку листов графена, т.е. содержит несколько графеновых плоскостей.
На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).
Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах.
Свойства и преимущества графена:
– графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится,
– благодаря двумерной структуре графена, он является очень гибким материалом, что позволит использовать его, например, для плетения нитей и других верёвочных структур. При этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату,
– в определённых условиях у графена активируется ещё одна способность, которая позволяет ему «залечивать» «дырки» в своей кристаллической структуре в случае её повреждений,
– графен обладает более высокой электропроводностью. Графен практически не имеет сопротивления. У графена в 70 раз мобильность электронов выше, чем у кремния. Скорость электронов в графене составляет 10 000 км/с, хотя в обычном проводнике скорость электронов порядка 100 м/с.
– обладает высокой электроемкостью. Удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы,
– обладает высокой теплопроводностью. Он в 10 раз теплопроводнее меди,
– характерна полная оптическая прозрачность. Он поглощает всего 2,3% света,
– графеновая плёнка пропускает молекулы воды и при этом задерживает все остальные, что позволяет использовать ее как фильтр для воды,
– самый легкий материал. В 6 раз легче пера,
– инертность к окружающей среде,
– впитывает радиоактивные отходы,
– благодаря Броуновскому движению (тепловым колебаниям) атомов углерода в листе графена последний способен «производить» электрическую энергию,
– является основой для сборки различных не только самостоятельных двумерных материалов, но и многослойных двумерных гетероструктур,
– при протекании соленой воды по листу графена последний способен генерировать электрическую энергию за счет преобразования кинетической энергии движения потока соленой воды в электрическую (т.н. электрокинетический эффект).
Физические свойства графена*:
Наименование показателя: | Значение: |
Длина связи С–С, нм | 0,142 |
Плотность, мг/м2 | 0,77 |
Удельная площадь поверхности, м2 /г | 2630 |
Подвижность электронов, см2/(В с) | 1,5 × 104 |
Модуль Юнга, ТПа | 1 |
Теплопроводность, Вт/(м К) | 5,1 × 103 |
Оптическая проницаемость | 0,977 |
* при комнатной температуре.
Получение графена:
Основными способами получения графена считаются:
– микромеханическое отшелушивание слоев графита (метод Новоселова – метод скотча). Образец графита помещали между лентами скотча и последовательно отшелушивали слои, пока не остался последний тонкий слой, состоящий из графена,
– диспергирование графита в водных средах,
– механическая эксфолиация;
– эпитаксиальный рост в вакууме;
– химическое парофазное охлаждение (CVD-процесс),
– метод “выпотевания” углерода из растворов в металлах или при разложении карбидов.
Получение графена в домашних условиях:
Необходимо взять кухонный блендер мощностью не менее 400 Вт. В чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля от карандаша. Далее блендер должен поработать от 10 минут до получаса вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.
Применение графена:
– солнечная энергетика,
– водоочистка, фильтрация воды, опреснение морской воды,
– электроника (ЖК-мониторы, транзисторы, микросхемы и пр.),
– в аккумуляторах и источниках энергии. Графеновый аккумулятор позволяет автомобилю без подзарядки преодолевать 1000 км, время зарядки которого не более 16 секунд,
– медицина. Ученые обнаружили, что графеновые чешуйки оксида графена ускоряют размножение стволовых клеток и регенерацию клеток костной ткани,
– создание суперкомпозитов,
– очистка воды от радиоактивных загрязнений. Оксид графена быстро удаляет радиоактивные вещества из загрязненной воды. Хлопья оксида графена быстро связываются с естественными и искусственными радиоизотопами и конденсируют их, превращая в твердые вещества. Сами хлопья растворимы в жидкости, и их легко производить в промышленных масштабах.
карта сайта
как сделать графен википедия материал аккумулятор свойства аэрогель углерод графит купить цена видео россия презентация плотность
техническое применение открытие получение технология производство структура изобретение графена в светодиодных устройствах мастер нож
Коэффициент востребованности 5 020
Графен и его применение. Открытие графена. Нанотехнологии в современном мире
Сравнительно недавно в науке и технике появилась новая область, которую назвали нанотехнологией. Перспективы данной дисциплины не просто обширны. Они грандиозны. Частица, именуемая «нано», представляет собой величину, равную одной миллиардной доле от какого-либо значения. Подобные размеры можно сравнить только с размерами атомов и молекул. Например, нанометром называют одну миллиардную долю метра.
Основное направление новой области науки
Нанотехнологиями называют те, которые манипулируют веществом на уровне молекул и атомов. В связи с этим данную область науки называют еще и молекулярной технологией. Что же явилось толчком к ее развитию? Нанотехнологии в современном мире появились благодаря лекции Ричарда Фейнмана. В ней ученый доказал, что не существует никаких препятствий для создания вещей непосредственно из атомов.
Средство для эффективного манипулирования мельчайшими частицами назвали ассемблером. Это молекулярная наномашина, с помощью которой можно выстроить любую структуру. Например, природным ассемблером можно назвать рибосому, синтезирующую белок в живых организмах.
Нанотехнологии в современном мире являются не просто отдельной областью знаний. Они представляют собой обширную сферу исследований, непосредственно связанную со многими фундаментальными науками. В их числе находятся физика, химия и биология. По мнению ученых, именно эти науки получат наиболее мощный толчок к развитию на фоне грядущей нанотехнической революции.Область применения
Перечислить все сферы деятельности человека, где на сегодняшний день используются нанотехнологии, невозможно из-за весьма внушительного перечня. Так, при помощи данной области науки производятся:
— устройства, предназначенные для сверхплотной записи любой информации;
— различная видеотехника;
— сенсоры, солнечные элементы, полупроводниковые транзисторы;
— информационные, вычислительные и информационные технологии;
— наноимпринтинг и нанолитография;
— устройства, предназначенные для хранения энергии, и топливные элементы;
— оборонные, космические и авиационные приложения;
— биоинструментарий.
На такую научную область, как нанотехнологии, в России, США, Японии и ряде европейских государств с каждым годом выделяется все больше финансирования. Это связано с обширными перспективами развития данной сферы исследований.
Нанотехнологии в России развиваются согласно целевой Федеральной программе, которая предусматривает не только большие финансовые затраты, но и проведение большого объема конструкторских и научно-исследовательских работ. Для реализации поставленных задач происходит объединение усилий различных научно-технологических комплексов на уровне национальных и транснациональных корпораций.
Новый материал
Нанотехнологии позволили ученым изготовить углеродную пластину более твердую, чем алмаз, толщина которой составляет всего один атом. Состоит она из графена. Это самый тонкий и прочный материал во всей Вселенной, который пропускает электричество намного лучше кремния компьютерных чипов.
Открытие графена считается настоящим революционным событием, которое позволит многое изменить в нашей жизни. Этот материал обладает настолько уникальными физическими свойствами, что в корне меняет представление человека о природе вещей и веществ.
История открытия
Графен представляет собой двухмерный кристалл. Его структура является гексагональной решеткой, состоящей из атомов углерода. Теоретические исследования графена начались задолго до получения его реальных образцов, так как данный материал является базой для построения трехмерного кристалла графита.
Еще в 1947 г. П. Воллес указал на некоторые свойства графена, доказав, что его структура аналогична металлам, и некоторые характеристики подобны тем, которыми обладают ультрарелятивистские частицы, нейтрино и безмассовые фотоны. Однако у нового материала есть и определенные существенные отличия, делающие его уникальным по своей природе. Но подтверждение этим выводам было получено только в 2004 г., когда Константином Новоселовым и Андреем Геймом впервые был получен углерод в свободном состоянии. Это новое вещество, которое назвали графеном, и стало крупным открытием ученых. Найти этот элемент можно в карандаше. Его графитовый стержень состоит из множества слоев графена. Каким образом карандаш оставляет след на бумаге? Дело в том, что, несмотря на прочность составляющих стержень слоев, между ними существуют весьма слабые связи. Они очень легко распадаются при соприкосновении с бумагой, оставляя след при письме.Использование нового материала
По мнению ученых, сенсоры, созданные на основе графена, смогут анализировать прочность и состояние самолета, а также предсказывать землетрясения. Но только тогда, когда материал с такими потрясающими свойствами покинет стены лабораторий, станет понятно, в каком направлении пойдет развитие практического применения данного вещества. На сегодняшний день химики, физики, а также инженеры-электронщики уже заинтересовались уникальными возможностями графена. Ведь всего несколькими граммами этого вещества можно покрыть территорию, равную футбольному полю.
Графен и его применение потенциально рассматриваются в производстве легковесных спутников и самолетов. В этой сфере новый материал способен заменить углеродные волокна в композиционных материалах. Нановещество может быть использовано вместо кремния в транзисторах, а его внедрение в пластмассу придаст ей электропроводность.
Графен и его применение рассматриваются и в вопросах изготовления датчиков. Эти устройства, выполненные на основе новейшего материала, будут способны обнаруживать самые опасные молекулы. А вот использование пудры из нановещества при производстве электрических аккумуляторов в разы увеличит их эффективность.
Графен и его применение рассматриваются в оптоэлектронике. Из нового материала получится очень легкий и прочный пластик, контейнеры из которого позволят в течение нескольких недель сохранять продукты в свежем состоянии.
Использование графена предполагается и для изготовления прозрачного токопроводящего покрытия, необходимого для мониторов, солнечных батарей и более крепких и устойчивых к механическим воздействиям ветряных двигателей.
На основе наноматериала получатся лучшие спортивные снаряды, медицинские имплантаты и суперконденсаторы.
Также графен и его применение актуальны для:
— высокочастотных высокомощных электронных устройств;
— искусственных мембран, разделяющих две жидкости в резервуаре;
— улучшения свойства проводимости различных материалов;
— создания дисплея на органических светодиодах;
— освоения новой техники ускоренного секвенирования ДНК;
— улучшения жидкокристаллических дисплеев;
— создания баллистических транзисторов.
Использование в автомобилестроении
Согласно данным исследователей, удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы. Этот факт ученые использовали для создания зарядных устройств нового поколения.
Графен-полимерный аккумулятор — прибор, при помощи которого максимально эффективно удерживается электрическая энергия. В настоящее время работа над ним ведется исследователями многих стран. Значительных успехов достигли в этом вопросе испанские ученые. Графен-полимерный аккумулятор, созданный ими, имеет энергоемкость, в сотни раз превышающую подобный показатель у уже существующих батарей. Используют его для оснащения электромобилей. Машина, в которой установлен графеновый аккумулятор, может проехать без остановки тысячи километров. На подзарядку электромобиля при исчерпании энергоресурса понадобится не более 8 минут.
Сенсорные экраны
Ученые продолжают исследовать графен, создавая при этом новые и не имеющие аналогов вещи. Так, углеродный наноматериал нашел свое применение в производстве, выпускающем сенсорные дисплеи с большой диагональю. В перспективе может появиться и гибкое устройство подобного типа.
Ученые получили графеновый лист прямоугольной формы и превратили его в прозрачный электрод. Он-то и участвует в работе сенсорного дисплея, отличаясь при этом долговечностью, повышенной прозрачностью, гибкостью, экологичностью и низкой стоимостью.Получение графена
Начиная с 2004 г., когда был открыт новейший наноматериал, ученые освоили целый ряд методов его получения. Однако самыми основными из них считаются способы:
— механической эксфолиации;
— эпитаксиального роста в вакууме;
— химического перофазного охлаждения (CVD-процесс).
Первый из этих трех методов является наиболее простым. Производство графена при механической эксфолиации представляет собой нанесение специального графита на клейкую поверхность изоляционной ленты. После этого основу, подобно листу бумаги, начинают сгибать и разгибать, отделяя нужный материал. При применении данного способа графен получается самого высокого качества. Однако подобные действия не годятся для массового производства данного наноматериала.
При использовании метода эпитаксиального роста применяют тонкие кремниевые пластины, поверхностный слой которых является карбидом кремния. Далее этот материал нагревают при очень высокой температуре (до 1000 К). В результате химической реакции происходит отделение атомов кремния от атомов углерода, первые из которых испаряются. В результате на пластинке остается чистый графен. Недостатком подобного метода является необходимость использования очень высоких температур, при которых может произойти сгорание атомов углерода.
Самым надежным и простым способом, применяемым для массового производства графена, является CVD-процесс. Он представляет собой метод, при котором протекает химическая реакция между металлическим покрытием-катализатором и углеводородными газами.
Где производится графен?
На сегодняшний день крупнейшая компания, изготавливающая новый наноматериал, находится в Китае. Название этого производителя — Ningbo Morsh Technology. Производство графена начато им в 2012 году.
Главным потребителем наноматериала выступает компания Chongqing Morsh Technology. Графен используется ею для производства проводящих прозрачных пленок, которые вставляют в сенсорные дисплеи.
Сравнительно недавно известная компания Nokia оформила патент на светочувствительную матрицу. В составе этого столь необходимого для оптических приборов элемента находится несколько слоев графена. Такой материал, использованный на датчиках камер, в значительной мере увеличивает их светочувствительность (до 1000 раз). При этом наблюдается и снижение потребления электроэнергии. Хорошая камера для смартфона также будет содержать графен.Получение в бытовых условиях
Можно ли изготовить графен в домашних условиях? Оказывается, да! Необходимо просто взять кухонный блендер мощностью не менее 400 Вт, и следовать методике, разработанной ирландскими физиками.
Как же изготовить графен в домашних условиях? Для этого в чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля. Далее прибор должен поработать от 10 минут до получаса, вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.
Оксиды наноматериала
Ученые активно исследуют и такую структуру графена, которая внутри или по краям углеродной сетки имеет присоединенные кислородосодержащие функциональные группы или (и) молекулы. Это оксид самого твердого нановещества, который является первым двумерным материалом, дошедшим до стадии коммерческого производства. Из нано- и микрочастиц этой структуры ученые изготовили сантиметровые образцы.
Так, оксид графена в сочетании с диофилизированным углеродом был недавно получен китайскими учеными. Это весьма легкий материал, сантиметровый кубик которого удерживается на лепестках небольшого цветка. Но при этом новое вещество, в котором находится оксид графена, является одним из самых твердых в мире.
Биомедицинское применение
Оксид графена обладает уникальным свойством селективности. Это позволит данному веществу найти биомедицинское применение. Так, благодаря работам ученых стало возможным использование оксида графена для диагностики раковых заболеваний. Обнаружить злокачественную опухоль на ранних стадиях ее развития позволяют уникальные оптические и электрические свойства наноматериала.
Также оксид графена позволяет производить адресную доставку лекарственных и диагностических средств. На основе данного материала создаются сорбционные биодатчики, указывающие на молекулы ДНК.
Индустриальное применение
Различные сорбенты на основе оксида графена могут быть применены для дезакцивации зараженных техногенных и природных объектов. Крое того, данный наноматериал способен переработать подземные и поверхностные воды, а также почвы, очистив их от радионуклидов.
Фильтры из оксидов графена могут обеспечить суперчистотой помещения, где производятся электронные компоненты специального назначения. Уникальные свойства данного материала позволят проникнуть в тонкие технологии химической сферы. В частности, это может быть извлечение радиоактивных, рассеянных и редких металлов. Так, использование оксида графена позволит добыть золото из бедных руд.
«Материал будущего» графен оказался опасным
Исследователи из Калифорнийского университета в Риверсайде обнаружили, что «материал будущего» графен, обещающий революцию во многих областях технологий, далеко не безопасен. Он может оказывать губительное воздействие на здоровье человека и окружающую среду.
Графен — это материал с уникальными свойствами, многие связывают с ним будущее всей электронной индустрии. Графен прочнее стали, гибок, обладает высокой электропроводимостью, при этом состоит всего из одного слоя атомов углерода. Эти свойства привели к тому, что материал стали воспринимать как основу для множества будущих «прорывных» изобретений человечества.
Тем не менее, до недавнего времени серьезным изучением экологических последствий применения нового материала никто не занимался. После продолжительного исследования ученые из Калифорнийского университета в Риверсайде пришли к выводу, что графен может быть опасен.
Выяснилось, что при попадании материала в грунтовые воды гексагональная структура графена начинает разрушаться, микрочастицы довольно быстро теряют стабильность, разрушаются и значительного вреда принести не могут. А вот графеновое загрязнение поверхностных вод, в которых больше органики, а жесткость ниже, может оказаться гораздо более серьезным. Молекулярная структура графена такова, что острые выступы нано-частиц материала способны разрывать мембраны клеток живых организмов, что обуславливает его токсичность. Ученые призывают максимально тщательно изучить свойства графена до того, как его начнут активно использовать в производстве электроники.
Тем не менее, вряд ли это открытие остановят человечество от масштабного применения графена. Материал обладает настолько уникальными свойствами, что заменить его попросту нечем. Ни один сплав не может похвастаться такой теплопроводностью, выдающейся прочностью и максимальными из всех известных материалов электропроводящими качествами. Подвижность электронов в графеновых структурах в сто раз превышает показатель кремния, который в данный момент является основой практически всей электроники на планете.
По своим свойствам графен куда надежнее, чем сталь. Гаджеты будущего на его основе окажутся куда более устойчивыми к повреждениям, чем то, что мы имеем сейчас. Но и это еще не все — графен может в сто раз ускорить скорость доступа к Интернету, привести к революции в компьютерной индустрии, на несколько порядков увеличив мощность процессоров. Графен нашел применение в медицине, в укреплении старых зданий, в производстве электроэнергии и сотнях других областей.
Первыми графен получили в 2004 году, работая в Великобритании в Манчестерском университете, выходцы из России Андрей Гейм и Константин Новоселов. В 2010 году за свой вклад в изучение «материала будущего» они были удостоены Нобелевской премии.
Источник: Gizmag
Материал Будущего, История Открытия, Физические и Химические Свойства, Возможности Применения, Проблемы и Прогнозы Массового Использования
14.06.2019
Так выглядит структура графена — всего лишь один слой атомов углерода
Разные периоды человеческой истории тесно связаны с теми или иными материалами. За каменным веком наступила эпоха бронзы, которую потом вытеснило железо. Последние десятилетия стали «звездным часом» кремния, который подарил нам цифровую революцию и интернет. Мы стремительно входим в следующий технологический уклад и судорожно ищем новый материал, достойный служить его символом. Возможно, что им станет углерод, вернее, одна из его разновидностей – графен.
В последние годы этот материал постоянно на слуху. Графен называют – ни много, ни мало – самым важным открытием XXI века и не жалеют в его описаниях превосходных степеней. Адепты технического прогресса обещают нам новый дивный «графеновый» мир, в котором мы окажемся буквально завтра. В нем железо не будет ржаветь, люди смогут делать топливо из воздуха и пить воду прямо из океана. Ну и по мелочи: мы получим новое поколение электроники, сверхпрочную броню, колоссальной емкости аккумуляторы и прочая, и прочая, и прочая. Скептики, слушая восторженные спичи такого рода, лишь привычно и гадко ухмыляются. Действительно, «графеновую революцию» нам обещают уже лет пятнадцать лет, а пока нет даже приемлемого способа получения материала.
Так что же такое графен: реальный прорыв или очередной научно-технический фейл? Почему его открытие вызвало такую истерию, и какие «пряники» сулит нам использование этого материала? И почему оно до сих пор не началось?
Химические и физические свойства
По химическому составу графен ничем не отличается от алмаза или графита – он состоит из тех же атомов углерода, вся «фишка» в их особом пространственном расположении. Именно оно приводит к колоссальному различию физических свойств. В традиционных материалах атомы упорядочены в трех измерениях, поэтому окружающие нас предметы имеют высоту, длину и ширину. Графен – это аллотропная модификация углерода, в которой атомы образуют двумерную гексагональную кристаллическую решетку толщиной всего лишь один атом. По сути, это просто единственный слой, «вытащенный» из объемного кристалла вещества – третьего измерения у него нет.
Графен — самый прочный из известных нам материалов
Графен – первый двумерный материал, полученный учеными. Благодаря такой уникальной атомарной структуре он может «похвастать» целым рядом удивительных свойств:
- огромной теплопроводностью;
- просто запредельной механической прочностью;
- гибкостью;
- высокой электропроводностью;
- непроницаемостью для большинства жидкостей и газов;
- прозрачностью.
Но самое поразительное другое: при своей атомарной тонкости графен абсолютно стабилен, он не распадается, хотя многие ученые не верили в это. Еще в 30-е годы выдающиеся физики Рудольф Пайерлс и Лев Ландау утверждали, что двумерные материалы будут неустойчивы и быстро разрушатся под действием внешних факторов. Оказалось, что атомы удерживаются вместе благодаря особым вибрациям.
Изучение этого чудо-материала продолжается, и он не устает удивлять исследователей. Так, например, недавно выяснилось, что двухслойный графен в определенном положении ведет себя как сверхпроводник, хотя раньше этого и не предполагали.
Открытие графена настолько воодушевило ученых, что буквально в течение десяти лет были получены еще три двумерных материала со схожими свойствами: силицен – на основе кремния, фосфорен – фосфора и германен – германия.
Как был открыт «материал столетия»?
Гипотеза о существовании двумерной формы углерода была выдвинута еще в XIX веке, но подтвердить ее фактически долгое время не получалось. В 1859 году Бенджамин Броуди впервые синтезировал оксид графена, но только в 1948 году с помощью электронного микроскопа удалось доказать чрезвычайно малую толщину этого материала. Позже ученые обнаружили, что среди кристаллов оксида графена попадаются частицы толщиной в один атом. В 70-е годы монослойный углерод пытались выращивать на различных металлических подложках.
«Крестным отцом» этого материала стал Ханс-Питер Бём, который в 1986 году предложил называть однослойный углерод графеном. В конце 90-х Йошико Охаши изучал электрические свойства тонких графитовых пленок толщиной в несколько десятков атомарных слоев.
Первооткрыватели графена — Гейм и Новоселов. В 2010 году за эту работу они получили Нобелевскую премию
Впервые получить графен удалось двум британским ученым российского происхождения – Андрею Гейму и Константину Новоселову. Для этого они использовали самые подручные материалы – кусок графита, обычный скотч ну и, конечно же, знаменитую русскую смекалку. Ученые наносили на липкую ленту небольшое количество графита, после чего ее много раз склеивали и расклеивали, каждый раз разделяя вещество пополам. Когда пятно становилось совсем прозрачным, полученный графен переносился на подложку. Позже этот способ назвали «методом отшелушивания».
В 2010 году Гейм и Новоселов получили Нобелевскую премию и весьма обидную кличку от журналистов – «мусорные физики». Ученые всего мира наконец-то смогли исследовать графен, ибо липкой ленты хватало в любой лаборатории. Это стало настоящим прорывом: по словам людей, которые занимаются данным вопросом, за последние годы мы узнали о двумерных материалах куда больше, чем за все предыдущее столетие. В сети вы легко найдете подробное описание метода Гейма и Новоселова и при желании сможете повторить его в домашних условиях.
Новая эра в электронике?
Графен – уникальный по своей электропроводности материал: его сопротивление на 35% меньше, чем у меди, а по подвижности носителей заряда он превосходит и кремний, и антимонид индия.
Существующие сегодня чипы памяти и микропроцессоры уже преодолевают технологические границы в 10 нанометров. Процесс дальнейшей миниатюризации представляет значительные сложности. Все громче раздаются голоса, что мы практически достигли пределов кремниевых чипов. Сегодня разработчики топчутся на тактовой частоте около 4 ГГц, не в силах обеспечить дальнейшее увеличение быстродействия.
На основе графена можно делать гибкие экраны электронных устройств. Скорее всего, это станет первой областью применения этого материала
Кремний всем хорош для микроэлектроники, но есть у него и существенный недостаток – низкая теплопроводность. С увеличением плотности элементов и ростом тактовой частоты это становится серьезным барьером для дальнейшего развития отрасли.
Правда, для изготовления полевого транзистора из графена нужно как-то создать в нем запрещенную зону, чтобы задавать два состояния, пригодных для двоичной логики: непроводящее и проводящее. Однако уже сегодня предложены несколько способов решения данной проблемы, и это позволяет надеятся на скорое появление подобных транзисторов. Инженеры полагают, что быстродействие графеновых микропроцессоров может быть на порядок выше существующих – на основе этого материала уже построены транзисторы, модуляторы, микросхемы, работающие на частотах выше 10 ГГц.
Помимо высокой электропроводности, графен отличается практически полной прозрачностью. Он поглощает всего лишь 2% света, причем в самом широком оптическом диапазоне. Список материалов, одновременно обладающих этими качествами, очень ограничен, и графен лучше их всех. Поэтому это идеальный материал для жидкокристаллических дисплеев. Кроме того, он отличается высокой механической прочностью, так что скоро вы сможете забыть о разбитых экранах смартфонов и ноутбуков. Мы уже можем получать материал подходящего качества, и сейчас вопрос стоит только в снижении его себестоимости.
Графен не только прочный и прозрачный, он еще и отличается прекрасной гибкостью – пластину из этого материала можно растянуть чуть ли не на 20%. Поэтому уже в ближайшем будущем нас точно ожидает эра гибкой электроники. Подобные девайсы уже не раз демонстрировались на выставках, но до коммерческого использования дело пока не дошло. Весьма активен в этом направлении корейский гигант Samsung.
Еще одной ожидаемой областью применения графена является производство различных измерительных устройств, датчиков, сенсорных систем. Например, газовые датчики из этого материала могут реагировать буквально на единичные акты адсорбции/реабсорбции молекул — то есть работать на пределе чувствительности для таких устройств. Еще в 2015 году специалисты из Американского химического общества (ACS) на основе графена разработали прототип тепловизора с высокочувствительной матрицей, не требующей охлаждения. В будущем это позволит создавать качественные и, главное, недорогие тепловизионные приборы и обычные телекамеры, способные вести съемку в полной темноте.
Графен — один из главных претендентов на смену кремния в микропроцессорах
Кто из нас не мечтал о новом смартфоне или ноутбуке с батареей, запаса которой хватало хотя бы на несколько дней? Очень может быть, что уже в ближайшем будущем это станет реальностью. Графен имеют максимальное отношение поверхности к объему, благодаря чему прекрасно подходит для аккумуляторов и суперконденсаторов.
Разработки в этом направлении ведутся самым активным образом. Несколько лет назад испанские инженеры сообщили о создании графенового аккумулятора для электромобилей, который может заряжаться всего за восемь минут, на 77% дешевле литиевых аналогов и в два раза легче их по весу. Разработчики утверждают, что заряда достаточно для 1000 километров пробега.
В 2017 году Институт передовых технологий Samsung (SAIT) заявил о создании революционной батареи на основе «графеновых шариков». Она, якобы, в несколько раз превосходит существующие аналоги по скорости зарядки и имеет на 45% большую емкость.
Тверже алмаза и легче перышка
Графен – самый прочный из известных нам материалов. По этому параметру он в двести раз превосходит сталь. Лист графена толщиной в один атом, выдержит давление острия карандаша, на другой стороне которого балансирует слон. А ученые из Georgia Tech пришли к выводу, что двухслойной пленке из этого материала не страшна даже пуля.
Понятно, что мимо таких способностей не могли пройти компании, занимающиеся военными разработками и защитным снаряжением. Уже появилось множество проектов графеновой брони, скафандров и легких бронежилетов. Правда, пока не совсем понятно, как из идеального двумерного материала сделать трехмерный, сохранив при этом его уникальные свойства.
На основе этого материал уже пробуют создать суперпрочные пластмассы и резину. Однако эти разработки пока находятся на начальном этапе.
Графен и проблема дефицита воды
Население планеты неуклонно растет, а количество водных ресурсов, наоборот, стремительно сокращается. Сегодня проблема нехватки питьевой воды не менее актуальна, чем проблема голода. И это при том, что ею покрыта большая часть поверхности земного шара. При чем тут графен, спросите вы?
Дело в том, что этот материал практически непрозрачен для большинства химических веществ, но воду он пропускает. Грубо говоря, фильтр с графеновой мембраной будет задерживать морскую соль, опресняя тем самым воду. Правда, неизвестно, насколько долговечным будет подобное устройство, ведь хлориды – очень агрессивные вещества. Ученым придется решить еще множество проблем на этом пути, но работы не прекращаются, ибо слишком уж заманчивы перспективы.
На основе графена можно делать уникальные фильтры, которые будут способны не только очищать воду, но и опреснять ее
Точно так же можно очищать воду от любых токсинов, ядов и радиоактивных загрязнений. С помощью графена предлагают даже фильтровать ядерные отходы.
На страже здоровья или перспективы в медицине
Графен поможет человечеству победить рак. Он способен находить клетки опухоли в организме. Это удивительное свойство обнаружили ученые из Университета штата Иллинойс. Феномен связан с разницей электрических потенциалов здоровых и раковых клеток, которую легко определяют частицы материала.
Однако графен способен не только находить опухоли, но и эффективно уничтожать их. Биологи из Университета Манчестера выяснили, что частицы оксида графена могут поражать стволовые раковые клетки, никак не влияя на здоровые.
Уверенно можно сказать, что одной из главных сфер применения графена станут различные биодатчики, кардиостимуляторы, протезы, элементы нейроинтерфейса. Например, на основе этого материала уже разработаны специальные полупрозрачные татуировки, способные показывать температуру тела и состояние кожи. Медики надеются, что в будущем подобные рисунки смогут измерять активность сердца, мозга, снимать другие важные показатели.
Возможно, что графен поможет залечивать переломы костей. Ученые из Университета Карнеги-Меллона создали на его основе биоразлагаемый материал, который привлекает стволовые клетки к месту перелома. Это значительно ускоряет процесс восстановления. Пока этот метод опробован только на мышах, так что до практического использования еще далеко.
Уникальные динамики, краска будущего и презервативы
Миллиардер и филантроп Билл Гейтс вложил круглую сумму в разработку презервативов из графена
Возможности применения графена фантастически широки – кажется, что он пригодится человечеству буквально везде. Достаточно добавить его и любой материал станет прочнее, долговечнее, устойчивее. Мария Шарапова играет ракеткой, выполненной из графена, строители хотят домешивать его в бетон, Билл Гейтс прилично вложился в создание сверхпрочных графеновых презервативов. Автопроизводители хотят делать из него кузова машин, а авиастроители – детали ракет и самолетов. Вот еще несколько примеров возможного использования материала:
- Сейчас немецкие исследователи работают над специальной краской на основе графена, которая будет сигнализировать о возможных дефектах изменением цвета. Пока этот проект находится в начальной стадии, о его коммерческом использовании говорить рано;
- Китайские ученые из Северо-Западного университета разработали покрытие на основе графена, которое защищает металлы от ржавчины. Причем, этот состав способен самовосстанавливаться после небольших повреждений;
- В конце 2017 года исследователи из частного университета Райса представили общественности кроссовки с добавлением графена. Материал был использован при изготовлении подошвенной резины. Разработчики утверждали, что их обувь отличается повышенной износостойкостью и невероятно прочна. Кроме того, кроссовки поразили присутствующих своей эластичностью: их можно было легко гнуть, крутить и складывать;
- На основе графена планируют создать новое поколение акустических систем. Современные динамики работают за счет генерации механических вибраций. Британские ученые показали, что графен способен издавать сложные и управляемые звуковые колебания при нагревании и охлаждении. Таким образом можно изготовить колонки, которые вообще не содержат движущихся деталей, при этом заметно уменьшив их размеры. В идеале такой динамик будет частью графенового экрана вашего телефона или другого устройства. Опытный образец имеет размер меньше ногтя, причем в него еще встроен эквалайзер.
Долгий путь между пробиркой и прилавком
Открытие графена нередко сравнивают с изобретением колеса, паровой машины, бумаги или транзистора. О росте интереса к графеновой теме можно судить по увеличению количества заявок на патенты: в 2010 году их было около 6 тыс. штук, а в 2016 – это число увеличилось до 50 тыс.
Больше всего заявок подали китайские компании и научные центры. В Поднебесной все, что связано с графеном пользуется огромной государственной поддержкой. Китай особо и не скрывает, что планирует забрать себе до 80% графенового рынка. Аналогичные программы поддержки отрасли существуют и в других странах. Почему же до сих не видно массовых графеновых технологий, несмотря на очень серьезные финансовые вливания в эту отрасль? Тому есть серьезные причины.
В настоящее время используется несколько способов получения графена, которые, в принципе, уже обеспечивают промышленные объемы этого вещества. Довольно серьезной проблемой является качество полученных образцов, а именно от него во многом зависят свойства и функционал материала. И если для красок или композитов вполне сгодится дешевый хлопьевидный графен, полученный химическим путем, то для высокочастотной электроники необходимо качественное сырье с минимумом дефектов и примесей.
К сожалению, пока не существует установленных стандартов качества графена, из-за чего страдает отрасль в целом. Недавно было проведено исследование продукции 60 компаний, которые, якобы, предлагали графен. Однако вместо него в образцах был обнаружен дешевый графит, к тому же содержащий еще и примеси других веществ.
В последние годы графен стремительно дешевеет
В принципе, нынешнее положение дел очень напоминает ситуацию на заре компьютерной эры, когда были огромные трудности с получением чистого кремния. Однако они уже давно решены.
Себестоимость графена неуклонно падает. Сегодня пластинка материала площадью 1 кв. см стоит меньше одного евро. Эксперт утверждают, что к 2022 году его цена упадет еще на порядок. Однако проблемы все еще остаются. Наибольшую трудность представляет процесс переноса графеновой пластины на ту или иную подложку – а это едва ли не основное требование для начала массового промышленного производства. Вероятно, что сначала мы получим графеновые экраны, затем дело дойдет до электронных устройств и различных детекторов. Другие, более экзотичные варианты применения материала, скорее всего, – дело ближайших десятилетий.
Внутри любого современного мобильного телефона «содержится» более двадцати Нобелевских премий, часть из которых была присуждена еще в середине 60-х годов. То есть, от идеи до ее воплощения прошло более пятидесяти лет. Графену не исполнилось еще и пятнадцати, а на рынке уже есть товары, содержащие этот материал. Так что графен не опаздывает, он, наоборот, опережает время.
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
С друзьями поделились: