Электродвигатель тесла принцип работы: Что нужно знать об электромоторе Tesla

Содержание

Tesla Model S — Как это работает

Так сложилось, что в рубрике «Космоddrом» почти ни одна статья не проходит без упоминания несомненно любимого всеми нами господина Илона Маска. Он действительно является одной из самых харизматичных фигур в современном мире науки и техники, а его компании Tesla и SpaceX впечатляют своей деятельностью. Учитывая большой интерес к персоне Маска и его детищам, я решил  поближе познакомить вас с ними в рамках нашей новой рубрики «Как это работает». И в сегодняшней статье речь пойдет о текущем флагмане Tesla, Model S.

Думаю, ни для кого не секрет, что Tesla производит электромобили. Вряд ли найдется много желающих оспорить тот факт, что Model S, являющаяся «лицом компании» на данный момент, — лучший представитель наземных транспортных средств, работающих исключительно на электричестве. Давайте же разбираться, как он работает.

В отличие от привычных нам автомобилей, у Model S нет большого и тяжелого двигателя, ведь взрывать бензин и преобразовывать энергию во вращение колес нет необходимости. Вместо этого индукционный электродвигатель размером с арбуз расположен между задними колесами. Создатели утверждают, что эффективность преобразования энергии в движение такой силовой установкой в 3 раза выше, чем у стандартного двигателя внутреннего сгорания.

Снизу автомобиля поместились батареи. В зависимости от комплектации емкость может варьироваться от 60 кВт*ч до 85 кВт*ч. А это от 5040 до 7104 элементов питания соответственно.  Такая емкость обеспечит средний запас хода от 330 до 425 км. К слову, производством батарей занимается компания Panasonic.

Расположение аккумуляторов в нижней части Model S в сочетании с относительно легким кузовом из алюминия позволяет расположить центр тяжести на уровне в 45 см, что очень низко. А, как известно, чем ниже центр тяжести, тем лучше управляемость и поведение на поворотах. Распределение нагрузки между передней и задней осями составляет 47 к 53.

Двигатель, расположенный сзади, работает по простому индукционному принципу, который используется в массе бытовых приборов. На катушки в статоре подается переменный ток, а благодаря электромагнитной индукции в движение приводится ротор. Конкретно в случае Model S используется трехфазный четырехполюсной двигатель. Охлаждается он за счет циркуляции жидкости. С его помощью достигается мощность в 416 л.с. и вращающий момент в 600 Нм. Такие показатели позволяют разгонятся с места до сотни за 4,4 секунды (в случае топовой комплектации).

Помимо того что электрический двигатель не производит выхлопных газов, что позитивно сказывается на экологии, ему еще не нужно время на подачу топлива и преобразования его во вращение колес, что означает, что задержка между нажатием на педаль газа и подачей мощности почти нулевая. А система рекуперации позволяет почти не пользоваться педалью тормоза в городских условиях. Впрочем, интенсивность системы настраивается вручную. А еще потому что в Model S нет большого двигателя, бензобака и прочих объемных штук, вы получите много места. В багажнике (том, который сзади) при желании можно даже установить два дополнительных сидения. Неплохо как для седана. Так что вы сможете перевозить двух детей сзади и даже еще одного спереди.

Наверное, самое больное место любого электрического автомобиля — время и место зарядки. Tesla предлагает систему «суперзарядки», которая за полчаса добавит вам 275 км хода. Однако такие заправки есть далеко не везде, и не всегда вы будете проезжать мимо них. С помощью адаптера можно заряжать Model S и от стандартной розетки, но занимать это может очень долгое время — более 15 часов при токе в 20 А.

Впрочем, в 2013 году Tesla продемонстрировала возможность полной замены батарей на заряженные всегда за 90 секунд. Примерно такое же время необходимо для заправки бензином. Стоить такая процедура на станциях Tesla будет примерно $60-80, что соизмеримо с полным баком топлива. В то же время зарядка от сети на фирменных станциях для всех владельцев Tesla бесплатна.

Абсолютное большинство органов управления автомобилем сконцентрировано на 17″ тач-панели. Таким образом, можно попробовать растаможить Model S как большой планшет с чехлом в виде автомобиля. Если прокатит, это сэкономит вам кучу денег.

Эпилог

Надеюсь, вам было интересно узнать подробнее о Model S — пожалуй, лучшем электромобиле современности. В качестве бонуса можете посмотреть галерею живых фотографий от нашего главного редактора, Саши Ляпоты, который смог в свое время познакомиться с творением Tesla лично, пусть даже только на выставочном стенде.

Если вам нравится рубрика «Как это работает», рассказывайте о ней друзьям с помощью кнопок соцсетей — этим вы поможете развитию проекта. А также предлагайте темы для следующих выпусков в комментариях.

Все, что нужно знать об электромоторе Tesla

Как выглядит электрический двигатель Tesla?

Любой знаток автомобильной марки Tesla знает, что название компании выбрано не случайно. Tesla Motors (Тесла Моторс) названа в честь создателя двигателя Николы Тесла, жившего в 19 веке. Практически каждый автомобиль, который производит компания Tesla – от родстера до модели S и Х, оснащается 3-фазным асинхронным двигателем переменного тока, концепцию которого и придумал легендарный изобретатель. 

 

В течение десятилетий после изобретения электродвигатель Николы Тесла работал от стационарной 3-фазной электрической розетки переменного тока. Примерно в 1990 году инженер-индивидуалист Алан Коккони разработал один из ранних портативных инверторов –устройство, которое превращает постоянный ток (DC) в батарее электромобиля в переменный ток (AC), необходимый для работы асинхронного двигателя.

 

Смотрите также: Почему Tesla Model S не подходит для спортивного использования?

 

Комбинация инвертор/электродвигатель была впервые использована на электроавтомобиле General Motors EV1. Позже итальянский физик Джузеппе Коккони создал улучшенную версию этой трансмиссии, которая появилась на автомобиле AC Propulsion Tzero. Но до серийного производства этого автомобиля не дошло. Зато на эту электромашину обратил внимание будущий соучредитель компании Tesla Motors Мартин Эберхард, основавший компанию в честь великого физика Николы Тесла вместе с Марком Тарпеннингом, к которым позже присоединился Илон Маск. 

 

 

В итоге компания Tesla получила лицензию на технологию электромотора автомобиля tZERO для своего родстера. Так на автомобилях Tesla появился асинхронный двигатель, который, кстати, претерпел ряд изменений и улучшений.

 

Прелесть асинхронного двигателя в том, что он не требует постоянных магнитов. Постоянные магниты достаточной мощности для вращения двигателя электроавтомобиля обычно изготовлены из редкоземельных материалов. А, как известно, редкоземельные магниты имеют огромную первоначальную стоимость. Также такие магниты имеют свойство размагничиваться. Но главное, что цены на редкоземельные материалы зависят от их добычи, что приводит к большим биржевым колебаниям цен. 

 

Смотрите также: Электромоторы под капотом старых автомобилей: Легко

 

Благодаря же транзисторам асинхронный двигатель можно использовать с обычными магнитами. В асинхронном моторе используются электромагниты (катушки проволоки и т. д.), которые можно включать и выключать или переключать много раз в секунду благодаря транзисторам с эзотерическими названиями, такими как дополнительный полевой транзистор на основе оксида металла (MOS) -FET) или биполярный транзистор с изолированным затвором (IGBT). 

 

Асинхронный двигатель, конечно, потрясающий мотор. Но не идеальный. В двигателе Tesla используется дорогостоящий и сложный в изготовлении ротор, изготовленный из меди. А благодаря особенности работы асинхронных двигателей ротор имеет тенденцию нагреваться и даже перегреваться. Тепло – это потраченная впустую энергия (известная как потеря i 

2 r). В электроавтомобиле это имеет огромное значение. Асинхронный электромотор также не так эффективен на низких скоростях, в отличие от других двигателей. Поэтому эта технология открыта для новых решений, которые бы привели к созданию более эффективных электродвигателей, а также к снижению затрат себестоимости.  

 

Фото Ebay

 

В зависимости от модели автомобили Tesla оснащаются одним или двумя электродвигателями. Например, заднеприводная модель Tesla Model S оснащается 3-фазным 4-полюсным асинхронным двигателем (вверху справа). Электроника привода инвертора (слева). Редуктор 9.73:1 и задний дифференциал (в центре) собраны в одну маслонаполненную часть, расположенную в задней части машины. Задние колеса приводятся в движение непосредственно этим устройством.

 

В машине нет сцепления и трансмиссии (нет переключения передач, нет режима «Нейтраль»). Можно запустить двигатель «вперед» для движения вперед и «назад» для движения назад. Питание ~ 400 В пост. тока поступает от аккумуляторной батареи через два тяжелых оранжевых кабеля, подходящих к инвертору, где он преобразует электричество в 3-фазный переменный ток. 

 

Полноприводные модели Tesla Model S оснащены аналогичным передним приводом со вторым асинхронным двигателем и редуктором 8.28:1, который и приводит непосредственно в движение передние колеса. 

 

В Tesla Model 3 на задних колесах используется вот этот двигатель:

 

Фото Ebay

 

Этот трехфазный 6-полюсный двигатель с постоянным магнитом с переключаемым сопротивлением (справа), электроникой привода инвертора (слева), редуктором 9:1 и задним дифференциалом (в центре) собран в едином блоке, который и вращает задние колеса. 

 

В моделях с полным приводом в Tesla Model 3 используется 3-фазный 4-полюсный асинхронный двигатель и редуктор, которые непосредственно и приводят передние колеса в движение. На скоростях этот асинхронный мотор немного более эффективный, чем задний двигатель PM-SR. Именно поэтому он используется для обеспечения большей части крутящего момента. 

 

Двигатель PMSR заднего привода Tesla модели 3 (статор и ротор) (технология Bloomberg). Трехфазный 6-полюсный двигатель с постоянным магнитом и переключаемым сопротивлением (PM-SRM) имеет даже более высокую производительность и эффективность, чем асинхронные двигатели, используемые в других автомобилях Tesla.

 

Ротор двигателя PMSR заднего привода Tesla Model 3 (технология Bloomberg)

 

Статор PMSR заднего привода Tesla Model 3 (технология Bloomberg)

 

 



Двигатель Тесла: характеристика, описание, создание

Никола Тесла – легендарный создатель в области электро- и радиотехнике, создатель переменного тока. В его честь, в 2003 году, была открыта компания по производству автомобилей, которые ездят на электричестве.

Технические характеристики

Основателем автомобильной компании Tesla стали Илон Маск, Джей Би Штробель и Марк Тарпеннинг. Прежде всего, основателям компании необходимо было разработать мощный электродвигатель и батареи, чтобы привести в работу ведущие колёса. Для создания первого прототипа автомобиля потребовалось почти 3 года.

Первый электрокар Tesla Roadster был презентован 19 июля 2006 года. Презентация автомобиля прошла успешно, но спортивный электрический автомобиль имел ряд недостатков. 2009 года была презентована 5-дверная Model S, двигатели которой устанавливаются на транспортные средства по этот день с небольшими доработками.

Технические характеристики силового агрегата электромобиля Tesla:

НаименованиеХарактеристика
ПроизводительTesla
Типтрёхфазный асинхронный двигатель
Мощность225, 270 или 310 кВт
Крутящий момент430, 440 или 600 Н·м
Максимальная скорость201 (первое поколение)
250 (второе поколение) км/час
Разгон до 100 км/часот 2,7 (модификация P100D) с
Тип аккумуляторалитий-ионный
Запас ходаот 370 до 632 км
Время зарядки8 ч

Обслуживание и эксплуатация

Обслуживание силового агрегата начинается с диагностики работоспособности электромотора, который непосредственно подключён к электронному блоку управления автомобилем. Если обнаружены ошибки, то мастера находят непосредственную причину. Сервисное и техническое обслуживание двигателей Тесла стоит проводить на сертифицированной станции, поскольку только у них имеется необходимое оборудование для всех ремонтно-диагностических и восстановительных операций.

Неисправности и ремонт

Ремонт, как и обслуживание, стоит проводить на специальном оборудовании у специалистов. Основными и частыми неисправностями является быстрая потеря ресурса батареи. Первые модели Тесла имели слишком малый запас энергии, а поэтому была высока вероятность «застрять» на трассе.

Ещё один факт – неисправность в системе автопилота. Эта проблема стала причиной гибели американского гражданина Джошуа Браун в 2016 году. Расследование причин аварии показало, что автопилот не видит поперечно идущий транспорт. Данная неисправность на стадии усовершенствования.

Забавные факты

Чтобы не делал человек, другой человек способен это изменить и модернизировать. Так и с засекреченными автомобильными технологиями. Джейсон Хьюз (Jason Hughes) большой поклонник Tesla и электромобилей компании. Но ему нравится не только кататься на таких электромобилях, но и знать, как они работают. Джейсон — довольно известная личность в сообществе поклонников Tesla. К примеру, именно ему удалось извлечь из обновлённой прошивки автомобиля некоторые данные о новой модели электромобиля. Если точнее, речь идёт про обнаружение записи «P100D» в прошивке Tesla 7.1.

Но сейчас ему удалось гораздо большее. Он смог достать задний привод Tesla Model S, и научился им управлять. Откуда получен привод, Хьюз не говорит, но это не так уж и важно. Гораздо более важно то, что он смог получить полный контроль над всеми функциями этого узла.

Первым шагом, в этом непростом проекте, стала подача питания на привод с одновременным сниффингом CAN-шины на предмет обнаружения отдельных команд управления. На это ушло около 12 часов, но, в конце концов, мотор удалось заставить вращаться. Мастеру пришлось повозиться — мало того, что данные работы движка пришлось расшифровывать, но и для управления его работой Джейсон написал специальное ПО. На этом этапе речь шла только о том, чтобы заставить движок работать. На то, чтобы перехватить и расшифровать команды CAN, у него ушло ещё 3 часа.

После этого дело пошло уже легче — Хьюзу удалось найти полный пакет команд управления. К примеру, он смог подключить систему водяного охлаждения, и приводил её в действие во время работы привода (в определённом режиме работы система заявляла о скорости в 188 километров в час). Двигатель удалось ввести и в режим генерации энергии. Система рекуперации энергии, введённая инженерами Tesla, позволяет во время торможения использовать двигатель машины в качестве генератора. Сейчас Джеймс может по своему усмотрению устанавливать различные параметры питания движка и генерации им энергии.

В итоге ему удалось даже создать собственную плату управления задним приводом. Интересно, что мотор был извлечён из автомобиля с прошивкой 7.1, которая включала ряд схем безопасности, предотвращающих вмешательство в нормальную работу системы. Но Джейсону удалось обойти эти препятствия.

Наиболее сложной задачей было заставить движок слушаться команд самодельного контроллера, но и это, оказалось, по силам умельцу. По его словам, он собрал свою плату буквально из мусора. Для того чтобы обезопасить движок, мастер использовал относительно низкий ампераж. Это не первый случай «хака» движка Tesla Model S. 11 месяцами ранее другому умельцу, Джеку Рикарду, также удалось заставить электромотор слушаться команд контроллера собственного изобретения. Но здесь речь идёт об использовании лишь двигателя и контроллера.

Стоит помнить, что обновлённая модель электромобиля Tesla Model S поставляется с 70 кВт·ч аккумулятором, который на самом деле имеет ёмкость в 75 кВт·ч, но часть батареи, если так можно выразиться, залочена программно. Компания продавала эти авто в течение месяца, и только сейчас об этом стало известно. Как же владелец такой машины может получить 5 дополнительных кВт·ч? Очень просто — доплатить $3250 для «разлочки».

Процесс апгрейда полностью программный, и производится «по воздуху». Работникам компании физический доступ к авто нужен только для того, чтобы сменить бейдж Tesla Model S 70 на бейдж Tesla Model S 75 (делается в сервисном центре). Идея компании проста, хотя и немного странная — позволить покупателям Tesla Model S 70 платить меньше на $3000, чем покупателям Tesla Model S 75. Причём «железо» у обеих моделей абсолютно одинаковое. В компании рассудили, что не всем нужна увеличенная ёмкость батареи, и тем, кому она не нужна, разрешили платить меньше. Разница в расстоянии, которое могут проехать обе модели в автономном режиме — около 35 км.

Кстати, не так давно для той же Tesla Model S было выпущено специальное программное обеспечение, позволяющее водителю управлять машиной при помощи «силы мысли». Мысленными командами можно заставить автомобиль проехать немного вперёд или же включить заднюю передачу. При этом считывание сигналов электрической деятельности мозга производится при помощи специального шлема. Сигналы анализируются специальной программой, после чего они передаются в бортовой компьютер для управления транспортным средством.

Вывод

Двигатель Тесла – представитель электрических автомобильных двигателей, который является самым мощным электромотором в мире. Обслуживание и ремонт проводятся только в условиях автосервиса. Это поможет избежать неприятностей.

Электродвигатель тесла принцип работы. Как это сделано, как это работает, как это устроено

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.


Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.
На самом деле ЭЛ. Двигатель не потребляет никакого тока.
В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.
Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.


Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.


Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.


Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.


Принцип работы электроавтомобиля Теслы

Согласно закону причинно следственных связей, если второе вытекает из первого, то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.
Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется «прямой пьезоэлектрический эффект». В тоже время характерно и обратное — возникновения механических деформаций под действием электрического поля — «обратный пьезоэлектрический эффект». Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.
Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи — электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом — выделение тепла.


При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений, на которые принято закрывать глаза.


Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потери энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с «вязкостью» эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

СХЕМА ПОТЕРЬ ЭНЕРГИИ В ОБЫЧНОМ ЭЛЕКТРОДВИГАТЕЛЕ

Что сделал Тесла. Тесла понял, что электродвигатель, который неизбежно «гонит волны» в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.


Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостиницы, собрал ВЧ генератор, устройство, которое «поднимает волну» в пространстве где работает электродвигатель. (Генератор ВЧ, а не низкочастотный просто, потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонансе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 МГц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем.


ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той энергии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Здесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигаель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разуманя организация процесса.


Фаза всасывания и рассеивания. На фазе всасывания конденсаторы заряжаются. На фазе рассевания отдают в цепь, компенсируя потери. Таким образом, КПД не 90% а возможно 99%. Возможно ли увеличив количество конденсаторов получить больше чем 99%? По видимому нет. Мы не можем собрать на фазе рассеивания больше, чем двигатель отдает. Поэтому дело не в количестве емкостей, а в расчете оптимальной емкости.

Пьезоэлектричество (от греч. piezo — давлю и электричество), явления возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.


Кварцевый генератор, маломощный генератор электрических колебаний высокой частоты, в котором роль резонансного контура играет кварцевый резонатор — пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. При деформации кварцевой пластинки на её поверхностях появляются электрические заряды, величина и знак которых зависят от величины и направления деформации. В свою очередь, появление на поверхности пластины электрических зарядов вызывает её механическую деформацию (см. Пьезоэлектричество). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот. К. г. характеризуются высокой стабильностью частоты генерируемых колебаний: Dn/n, где Dn — отклонение (уход) частоты от её номинального значения n составляет для небольших промежутков времени 10-3-10-5%, что обусловлено высокой добротностью (104-105) кварцевого резонатора (добротность обычного колебательного контура ~ 102).


Частота колебаний К. г. (от нескольких кГц до нескольких десятков МГц) зависит от размеров кварцевого резонатора, упругости и пьезоэлектрической постоянных кварца, а также от того, как вырезан резонатор из кристалла. Например, для Х — среза кристалла кварца частота (в МГц) n=2,86/d, где d — толщина пластинки в мм.


Мощность К. г. не превышает нескольких десятков Вт. При более высокой мощности кварцевый резонатор разрушается под влиянием возникающих в нём механических напряжений.


К. г. с последующим преобразованием частоты колебаний (делением или умножением частоты) используются для измерения времени (кварцевые часы, квантовые часы) и в качестве стандартов частоты.

Естественная Анизотропия . — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок Резонанс (франц. resonance, от лат. resono — звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы.


Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы). Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt, или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону. Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х — смещение массы от положения равновесия, k — коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий.


Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия. В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L, Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности, имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов. В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см. Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний. Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы.


Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами. Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала.


Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители).


В др. случаях Р. играет положительную роль, например: в радиотехнике Р. — почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций. Нужно подобрать емкость так, чтобы пошло смещение по фазе. Противофаза это аспект оппозиции. Совпадение — это аспект соединения. Соединения дает бросок, но и равное падение. Возможно, что максимальное содействие получается, когда работает аспект тригона. Это смещение по фазе не на 180%, а на 120%. Емкость должна быть рассчитана так, чтобы она давала смещение по фазе в 120%, возможно, что это даже лучше, чем соединение. Может именно поэтому, Тесла любил число 3. Потому что использовал тригональный резонанс. Тригональный резонанс, в отличие от резонанса соединения должен быть более мягкий (не деструктивный) и более стабильный, более живучий. Тригональный резонанс должен держать мощность и не идти в разнос. ВЧ резонанс создает накачку стоячей волны вокруг передатчика. Поддержание резонанса в эфире не требует большой мощности. В тоже время образовавшаяся стоячая волна может обладать огромной мощностью для совершения полезной работы. Этой мощности хватит и на поддержание работы генератора и на поддержание гораздо более мощных устройств

Предлагаем Вашему вниманию несколько статей посвященных новому взгляду на работы Николы Тесла. Начнем со статьи о самодвижущемся автомобиле Теслы, который так и остался великим секретом за семью печатями, благодара стараниям авто производителя, который как и производитель косметики и любой прочий промышленник, входящий в общий синдикат подконтрольный мировому правительству, сделали все, чтобы мы так и не узнали правды.

На запрос в интернете “автомобиль Тесла” поисковик выдает огромное количество ссылок. Однако при внимательном ознакомлении выясняется, что это, в основном, перепечатки нескольких статей из газет того времени.

Итак! Что нам известно. 1931 год. Автомобиль, в котором двигатель внутреннего сгорания заменен на электродвигатель. Электродвигатель мощностью 80 лошадиных сил (58 кВт) либо стандартный, асинхронный, либо доработанный Теслой. Аккумулятор остался штатный. Добавлена коробка с габаритами 60х30х15 сантиметров. 12 электронных ламп, провода, резисторы и конденсаторы. Также из коробки торчали 2 стержня длиной по 7,5 сантиметров. Вот, практически, все что мы имеем достоверного об этом удивительном автомобиле на сегодняшний день.

Теперь начнем рассуждать!

Для начала предлагаю исключить из рассмотрения стержни. Основание: если это антенны полуволновой вибратор, то они рассчитаны на частоты СВЧ, которых в те далекие годы еще не знали. Скорее всего Тесла установил эти стержни для отвода глаз — так легче объяснить обывателям, откуда берется энергия.

Далее рассмотрим таинственную коробку. Там были установлены лампы и купленные резисторы и конденсаторы. Лампы 30-х годов представляли из себя стеклянные баллоны диаметром порядка 50-60 мм и длиной до 100-150 мм. 12 ламп с панелями и разводкой питания занимали более половины пространства коробки. Учитывая, что лампы при работе изрядно грелись, думаю, что кроме них в коробке ничего больше не было. Следовательно источник питания был установлен Теслой где-то под капотом или в багажнике автомобиля. Явно не на виду у любопытствующей публики.

Еще один важный, с моей точки зрения, момент. На автомобиле осталась коробка перемены передач, тормоз и педаль газа. Скорость вращения асинхронного двигателя можно регулировать тремя способами. Изменением частоты переменного тока, переключением числа полюсов и изменением напряжение питания. Менять частоту питающего напряжения слишком сложно и этот способ следует отбросить, как маловероятный. Переключать число полюсов — можно, но это значительно усложняет конструкцию двигателя. Мы знаем, что двигатель был стандартный. Если он и был доработан Теслой, то эта доработка, скорее всего, касалась обмоток, а не конструкции статора и ротора. Таким образом у нас остается единственный способ регулировки числа оборотов двигателя — изменение напряжения питания. Этот способ наименее экономичный, но и наиболее простой. Тесла имел неограниченный запас мощности и мог себе позволить рассеивать ее на… Тут встает вопрос на чем он мог рассеивать излишек мощности? Можно поставить гасящие реостаты, но это решение не для Теслы. Какие габариты должны были бы иметь эти реостаты и какое количество тепла на них должно рассеиваться. Тесла хороший электронщик (как бы мы сегодня его назвали) и любитель внешних эффектов, поэтому он, скорее всего, выбрал другой способ регулировки напряжения. Вот тут мне приходит мысль, что лампы и коробка предназначены именно для регулировки выходного напряжения. Что и сколько надо регулировать? Двигатель (80 л.с. или 58 кВт) при напряжении питания 300 вольт потребляет около 200 ампер. При напряжении 500 вольт ток составляет 116 ампер. При напряжении 1000 вольт ток составляет 58 ампер. Скорее всего двигатель был перемотан на напряжение не ниже 500 вольт. Напряжение переменное. Надо регулировать как положительную, так и отрицательную полуволны. 12 ламп. По 6 ламп в каждом плече регулировки. Лампы в каждом плече включены параллельно. На каждую лампу приходится по 20 ампер (при 500 кольт) или 10 ампер (при 1000 вольт). Такие токи и напряжения вполне доступны для ламп того времени. Лампы управляются по сетке, и работают в режиме ключа. Управляющий сигнал на лампы синхронизирован с частотой основного источника питания (секрет Теслы) и модулируется педалью газа.

Теперь пара слов об аккумуляторе. Он нужен для запуска основной схемы питания, спрятанной Теслой внутри автомобиля. Во время работы аккумулятор может подпитываться по стандартной схеме от отдельного генератора на валу электродвигателя, либо от основной схемы. Это не принципиально и сильного интереса не представляет.

Вот так мне видится решение загадки автомобиля Тесла.

Виктор Васильевич Нелепец.

В течение многих веков сотни учёных, включая Леонардо да Винчи и Николу Тесла, разрабатывают модели «вечных двигателей», которые способны поддерживать сами себя без подпитки энергией от внешних источников — топлива, ветра, солнца, электроэнергии и т.п. Официальная же наука не устаёт мощной «дубинкой» критики бить по головам открывателей, мечтающих о неиссякаемой или свободной энергии.

Однако действительно ли невозможно создать «вечный двигатель » или генератор свободной энергии ? По мнению многих учёных, которые занимаются подобными разработками, препятствуют внедрению таких машин не иначе как богатейшие люди планеты на пару с местными чиновниками.

Как считают многие экологи и сторонники движения защиты окружающей среды, именно эти «короли» с миллиардными капиталами по всему миру держат на привязи всё человечество и, подобно вампирам, высасывают последние деньги и кровь жителей Земли. Уже сейчас, по их мнению, можно полностью отказаться от нефти, газа, атомных и тепловых электростанций, загрязняющих окружающую среду, и перейти на свободную энергию . Тогда человечество станет значительно независимей от государства и крупных корпораций. Жить станет проще, свободней и дешевле.

Ничто не вечно под луной

Как писал в своей статье «Прощай, «вечный двигатель». Да здравствует свободная энергия! » Владимир Бердинских, выражение «вечный двигатель » является грустным примером создания отрицательного ярлыка и умышленного сдерживания технического прогресса. Вследствие этого попытки реабилитации понятия «вечный двигатель » обречены на противоположный, отрицательный результат, вместо того, чтобы способствовать распространению передовых научных технологий и знаний.

Бердинских, учёный, который многие годы борется за устранение противоречий в науке, предлагает перестать биться лбом об стенку, чтобы защитить «вечный двигатель », и сменить «оборонительную» тактику, которую приходится принимать учёным. По мнению Бердинских, вместо «вечно» критикуемого понятия «вечный двигатель », следует использовать новые рациональные понятия, которые подкреплены реальными примерами из практики, — к примеру, самообеспечивающиеся, самоорганизующиеся системы, живые системы, устройства на свободной энергии и т.д.

«Вечный двигатель»: время, вперёд!

Французская академия наук, которая начиная с 1775 года и по сей день отказывается принимать на рассмотрение какие-либо проекты вечных двигателей , надолго заморозила технический прогресс, задержав внедрение целого класса удивительных технологий и механизмов. Очень немногим разработкам удалось пробиться через этот заслон.

Среди них — автономные часы, которые, по иронии, выпускаются сегодня именно во Франции. Подпитывает их энергия колебания температуры воздуха и атмосферного давления в течение дня. Герметическая ёмкость часов понемногу «дышит», реагируя на изменения среды. Эти движения передаются на ходовую пружину и подзаводят её. При этом изменение температуры среды всего на 1 градус Цельсия позволяет часам работать в течение последующих двух суток. И при исправности они могут работать практически вечно. Чем не «вечный двигатель »?

Никола Тесла — пророк эпохи свободной энергии

Хотя первые генераторы свободной энергии начинают появляться только сейчас, почти столетие назад «Электрический Прометей» Никола Тесла уже лелеял идеи, как разработать подобные устройства. Однако им так и не суждено было появиться на свет. Через все открытия и эксперименты Тесла красной нитью проходит мысль о том, что энергия разливается по всему миру. В 1891 году он писал: «Мы стоим перед грандиозной задачей — разработать способ, как пользоваться этой энергией».

«Сверхчеловек» — так окрестили Теслу современники. Никола мыслил глобально, заботясь не о себе и даже не о своей стране, а обо всём человечестве.

Главное изобретение в жизни Николы, которое ему не удалось довести до конца, — это Всемирная беспроводная система передачи энергии и информации. Энергопередающая станция направляла бы электроэнергию в любую точку на Земле, отражая её от верхних слоёв атмосферы, и через саму Землю. Воспользоваться этой энергией могли бы все — автомобили, самолеты, корабли, заводы. Им нужно было бы лишь иметь установку для приёма энергии. Эта же система транслировала бы на весь мир точное время, музыку, тексты, фотографии, что является прототипом Интернета, причём бесплатного — купить пришлось бы только энергопринимающую министанцию. А с обычного телефона каждый мог бы позвонить в любую точку мира, тоже бесплатно.

Для создания такого устройства Тесла убедил своего спонсора Моргана соорудить огромную башню в Уорденклиффе, США, и пытался передавать с её помощью энергию. Однако первые эксперименты потерпели неудачу. Вскоре началась Первая мировая война, и по требованию военных исследования были остановлены. Большинство дневников Тесла потеряны или уничтожены. Многие его проекты сегодня уже невозможно восстановить. Кто их уничтожил — остаётся загадкой.

Машина Потапова — нефти смертный приговор

Доктор технических наук и академик РАЕН Юрий Потапов изобрёл вихревые теплогенераторы ЮСМАР, которые запатентованы в России, Украине, США и других странах. Их выпускают несколько предприятий под марками от ВТГ-1 до ВТГ-10 разных мощностей. КПД теплогенераторов, по утверждению производителей, вначале составлял 120%, а затем был увеличен до 200–400% и выше.

Внешняя электроэнергия требуется только для запуска двигателя. Принцип работы электростанции основан на том, что вода нагнетается в турбину, в которой образуется вихревой поток молекул со скоростью свыше 500 метров в секунду. После разгона турбины в ней нагревается воздух, и скорость увеличивается до 12 тысяч оборотов в минуту. Избыточная энергия, как считает изобретатель, вероятнее всего возникает из холодного ядерного синтеза, который образуется в вихре.

Но не одними теплогенераторами сыт Потапов. Примерно на тех же принципах он спроектировал ещё несколько устройств с огромным КПД, включая автомобильный двигатель, который также использует для работы воду и является экологически безопасным.

Экспериментальная модель 4-цилиндрового двигателя мощностью около 30 лошадиных сил находится в Кишинёве, столице Молдовы. Под высоким, более 400 атмосфер, давлением в цилиндры впрыскивается нагретая вода. Из-за резкого падения давления и резкого охлаждения она распадается на составляющие — кислород и водород. В результате возникает взрыв. Роль поршней в двигателе играет та же вода, перетекающая во время взрыва из одного цилиндра в другой и производящая механическую работу — вращение вала. При взрыве газовая смесь обратно превращается в воду и опять становится поршнем.

Образуется замкнутый цикл. Потребление воды при этом минимальное, а выхлоп вообще отсутствует. Несмотря на то, что для запуска двигателя необходимо небольшое количество топлива, в качестве которого используется газ, дальше двигатель работает на одной воде.

Все эти изобретения вызывали и продолжают вызывать массу дискуссий. В Интернете можно найти и довольно нелестные отзывы о Юрие Потапове и его изобретениях, в которых он обвиняется во всевозможных грехах. Какое-то время в Молдове на уровне государства было запрещено прессе упоминать о машинах Потапова. Основной козырь оппонентов заключается в том, что, согласно классической физике, КПД не может превышать сто процентов.

Да, это козырь из школьного учебника по физике, — рассказывает Семён Потапов, сын известного изобретателя и генеральный директор НТФ «Юсмар», в интервью «Российской газете». — Но споры о коэффициенте полезного действия — игра слов и цифр. На сегодня известно 220 явлений, КПД которых значительно выше 100%. КПД ячейки Паперсона около 1200. Если же рассчитать КПД при атомном взрыве, получатся миллионы единиц».

Как бы там ни было, идеи Потапова реализованы в металле и продолжают «нарушать» законы физики. Как утверждают Владимир Баршев и Владимир Богданов в своей статье об изобретениях Юрия Потапова, опубликованной в «Российской газете», в США уже более восьми лет на этом экзотическом топливе ездят шесть машин.

Анатолий Рыков из общественной организации «Наука и техника» в отношении дальнейших разработок Юрия Потапова в области свободной энергии однажды сделал прогноз: если Потапова не остановить, то рыночная экономика, которая основана на огромной индустрии нефти, газа и АЭС, скоро может рухнуть.

Независимой Украине — свободная энергия

Не отстают от своих зарубежных коллег и украинские учёные. Днепропетровский производитель автономных энергетических систем Агроиндустрия недавно начал выпускать свой новый продукт — магнитный электрогенератор Адамса–ВЕГА. Инновация не нуждается в каких-либо внешних источниках, таких как ветер, топливо, солнце и т.п. и генерирует энергию в пределах от 1 до 5 кВт в зависимости от модели.

Машина начинает работу при толчке рукой по часовой стрелке. При этом ротор начинает вращаться без остановки, вырабатывая энергию и заряжая АКБ, подсоединённые к устройству. Как сообщает компания Агроиндустрия, на территории Украины на данный момент уже успешно работают 24 таких электрогенератора.

Тем не менее, несмотря на оптимизм и веру в успех современных разработчиков устройств на «свободной энергии », власть имущие давно надели на человечество аркан зависимости от энергоносителей, уже более столетия выбивая деньги у ничего не подозревающих сограждан.

В итоге, вместо экологически чистых и не требующих добычи и транспортировки топлива технологий, коммерциализированная наука довела экологию Земли до критического состояния. Из-за зависимости от энергоносителей усилилось разделение на бедных и богатых, обострились социальные конфликты. Если бы разработки Тесла и современные устройства на «свободной энергии » достигли успеха и распространились по всему миру, то автомобиль был бы доступным средством для каждого. Телефонная связь и Интернет были бы практически бесплатными. А экономика Украины не зависела бы так сильно от российского газа. В Ираке не произошла бы война, а нефтегигант ВР не разлил бы в океан миллионы тонн нефти, причинив непоправимый ущерб экосистеме… Вы, уважаемый читатель, можете сами продолжить, насколько иным был бы сценарий развития истории.

Возможно, качественный скачок к свободной энергии не произойдёт до тех пор, пока основная масса людей не изменит укоренившуюся идеологию — стремление жить за счёт других. Когда же люди, подобно Николе Тесла, озаботятся судьбой всего человечества, а не только своей, — свободная энергия для всех и «вечные двигатели » будут поставлены на конвейер.

Давайте подумаем вместе, — можно ли двигатель автомобиля сделать чистым по выхлопу газов, лёгким по весу и даже более универсальным по применению, чем сейчас?

Основная масса инженеров понимает, что применяемый на автомобилях современный поршневой двигатель, достиг своего максимального предела использования и потолка изобретательности. Практически из него выжать уже ничего нельзя. Причиной ограниченности является сам кривошипно-шатунный механизм, его не способность развивать обороты более 10 тысяч в минуту из-за трения. А, как известно, чем выше обороты двигателя, тем солиднее растёт коэффициент полезного действия (КПД), т.е. меньше требуется топлива на единицу перевозимого груза, да и вес конструкции для одной и той же мощности уменьшается пропорционально числу оборотов. Создавались тысячи конструкций по замене поршневого двигателя. Самым серьёзным из тепловых двигателей был двигатель Ванкеля, имевший КПД до 60%, но не смог конкурировать в силу высокого износа уплотняющих пластин. Были попытки применить турбореактивный самолётный двигатель специально для автомобиля, однако из-за большого объёма газа, образующегося за машиной, конкуренция не состоялась.

Известные химические ракетные двигатели имеют низкий КПД порядка 15%, а это означает, что из 100 затраченных литров топлива непосредственно на передвижение расходуются только 15, а остальные 85 литров вылетают в пространство в виде дыма, тепла и различных окислов, т.е. не участвуют в работе. Низкая экономичность получается в силу того, что при химических реакциях топлива с окислителем тепловая скорость молекул и атомов не превышает 3 — 5 км/с, и это является наибольшей скоростью истечения из сопла камеры сгорания, т.е. пределом скорости движения газа, который можно назвать порогом истечения для реактивных и турбореактивных двигателей. Для примера, скорость пули из пистолета, в среднем, имеет порядок 0,7 км/с. По данной причине для увеличения толкающей силы отдачи в ракетном двигателе конструкторы вынуждены закладывать максимальный секундный расход истекающих газов и большие сечения сопел. Только поэтому химические ракеты имеют громадный стартовый вес в сотни и тысячи тонн топлива, хотя полезный груз при этом составляет малую часть данного агрегата.

Немногим лучше обстоит дело с самолётами. КПД их турбореактивных двигателей доходит до 40 — 45%, поскольку они летят в атмосфере и за счёт вращения лопаток многоступенчатой турбины сжимают воздух перед камерой сгорания для повышения экономичности. Остальные 55% идут на загрязнение окружающей атмосферы, что тоже плохо для экологии нашего жизненного пространства. Кроме того, и ракетные и авиационные двигатели имеют высокое звуковое сопровождение, что неблагоприятно для населения возле аэродромов. Снижение шумового эффекта у летающих объектов одна из актуальнейших задач нашей цивилизации.

Вместе с тем, в недрах современной техники зародилось и окрепло электрореактивное движение, способное в корне изменить существующее положение и с экономичностью двигателей, и с шумом при их работе. Известно немало электрореактивных двигателей; с термическим разгоном рабочего тела, с электростатическим ускорением и с электромагнитным истечением газа. Вся ценность электрореактивного движения заключается в высокой скорости истечения газовой струи, в среднем примерно 50 — 100 км/с. А из теории реактивного движения известно, что сила толкания двигателя равна умножению (произведению) массы выбрасываемого газа на скорость истечения. Чем выше скорость, тем меньше надо единовременно выбрасывать количество газа, тем меньше размер сопла, тем экономичнее двигатель при одной и той же мощности. Этот факт проверен и при скорости истечения в 1000 км/с,- выводы теории подтверждаются полностью. Всё это правильно, однако применить такие электрореактивные двигатели особенно на самолётах и автомобилях сложно, поскольку они работают при высоких разряжениях, т.е. без атмосферы, в вакуумных условиях. К тому же им требуется мощный источник тока, тогда как доступные для космоса солнечные батареи обеспечивают примерно не более ста киловатт мощности.

В последнее время всё внимание инженеров переместилось на электромобиль. Казалось, что вот-вот будет создан универсальный электромобиль по замене теплового двигателя. Особенно энергичный бум вызвала разработка уникального источника тока — топливного элемента. Здесь на электроды электролитической ванны подаются газообразные топливо и окислитель. В результате разложения газов под действием катализаторов на электродах на две ионные и одну электронную составляющие, получают необходимый электрический ток для приводного электродвигателя. Однако сам электродвигатель оказался тяжелее бензинового двигателя той же мощности и….. электромобиль не состоялся, несмотря на громадные деньги, вкладываемые до сих пор в развитие топливных элементов. Каков же выход из создавшегося положения?

В будущем есть надежда на сверхпроводимость. Сверхпроводниковые электродвигатели благодаря собственным мощным магнитным полям не нуждаются в трансформаторном железе для усиления магнитного потока и представляют собой простые диски, которые легко встраиваются в колёса машины, как сейчас это делается у грузовых машин БЕЛАЗ с обычными электродвигателями. Однако, в силу того, что до сих пор не получена даже в лабораториях, надежды на использование сверхпроводниковых двигателей на автомобилях в массовом производстве на сегодняшний день близки к нулю.

Выскажем крамольную мысль, — вполне возможно изготовить двигатель легче бензинового при той же мощности и даже более экономичный, но без трущихся механических деталей. Развитие техники на данный момент позволяет это выполнить. А что если в высокочастотном электрореактивном двигателе избавиться от высокой частоты? Она же нужна только для ионизации атомов, чтобы разгонять их сильным электрическим полем, поскольку на обычные не ионизированные атомы газа в силу их нейтральности поле не действует. Для этого разумно применить очень интересный аппарат.

Талантливый Тесла выдал нам оригинальный инструмент способный обеспечить развитие техники на 200 — 300 лет вперёд, однако, из-за своих ограниченных знаний мы не можем до сих пор рационально использовать его конструкцию в технике. Это так называемая (), которая применяется в основном как декоративное устройство для получения красивых разрядов электричества. Устройство её предельно простое. Состоит из обычных двух медных обмоток без трансформаторного железа или ферромагнетика. Первичная обмотка, имеющая 5 — 30 витков, питается напряжением 1 — 10 киловольт (от аккумулятора с транзисторным преобразователем) и имеет параллельный конденсатор. При прерывании тока первичной обмотки подключённым к её концу разрядником, в ней благодаря конденсатору, как в обычном колебательном контуре, создаётся высокая частота тока, которая передаётся во вторичную обмотку, расположенную внутри первичной. Вторичная обмотка имеет много витков, в ней возникают высокие напряжения, сам Тесла получал до нескольких миллионов вольт. Под действием напряжения, если нижний конец вторичной обмотки заземлить, верхний конец с дополнительной иглой создаёт отличную корону, — разряд происходит просто в воздух. Секрет весь в том, что данная катушка выдаёт очень высокие напряжения, а мы из-за отсутствия нормального понимания электричества (поэтому и нет комнатного сверхпроводника), побаиваемся применять его, хотя на электролиниях успешно достигли напряжения до 1,2 миллионов вольт. Так что в двигателях, при напряжениях 200 — 300 киловольт, можем работать спокойно, опыт работы с большими напряжениями уже накоплен. Корона, образованная таким напряжением, создаёт ионный ветер, т.е. у острия «вторички» атомы воздуха отдают ему внешние электроны и разгоняются электрическим полем до скоростей в десятки и даже сотни километров в секунду. Это и есть корона. Всё это происходит благодаря высокочастотным пульсациям тока вторичной обмотки и высокому напряжению. Частота тока в сочетании с высоким напряжением аналогично катализатору в топливном элементе бесплатно раскалывает молекулы газов на атомы и ионизирует их. Для большего эффекта можем на верхний конец вторички установить и 5, и 20, и 100 иголок,- всё зависит от той мощности, которая нам необходима. Каждая игла имеет предел по нагреву при ионизации газа, т.е. может пропускать определённую силу тока примерно до 0,3 Ампера (с серебрением).

Рис.1. Принципиальная схема устройства игольчатого движителя.

На основе игольчатого электрода (рис. 1) и построим свой Тесла-движитель. Для этого в фарфоровый корпус 1 поместим игольчатый электрод 2 на который под иголки через отверстия подаётся топливовоздушная смесь, как в поршневом автодвигателе. Здесь, благодаря высокому напряжению и высокой частоте пульсаций тока от вторички катушки Теслы на кончиках иголок молекулы газов распадаются на атомы, которые отдают внешние электроны иголкам, а ионизированные атомы (ионы) разгоняются электрическим полем в сторону отрицательного кольца 3. Это кольцо заэкранировано пористым керамическим кольцом 4 с целью пропустить через поры керамики электрическое поле, но не дать возможности возникнуть электрической дуге в данном воздушном промежутке. Искровой пробой, подчас, и через пористую керамику проскакивает, но он не страшен, керамика хорошо держит температуру нагрева, хотя от этого она невысока. Только при напряжениях свыше расчётных дуга огибает пористую керамику по воздуху и ударяет в электрод 3 с внешней стороны, поэтому на пористом кольце устроен буртик 4 на выходе ионов в пространство. Такая пористая защита позволяет максимально сблизить электроды на минимальное расстояние, чем производится усиление электрического поля до наивысшего значения, т. е. усиливает разгон ионов. Образующийся объёмный заряд у отрицательного электрода 3 утопает в порах керамики и не мешает прохождению основного потока ионов в пространство. В ракетных электрореактивных двигателях этот же эффект достигается вакуумом, только поэтому данные двигатели не способны работать в атмосфере. С применением пористой керамики можно использовать и их. Топливная смесь на входе в камеру сгорания нужна для повышения степени ионизации, поскольку горение в районе игл увеличивает вероятность ионизации до максимума.

Данную конструкцию — Тесла-движитель — вполне логично пристроить на летательных аппаратах. В первое время надо приспособить их на лёгких конструкциях. Установив пару электрореактивных движителей по концам крыльев, скажем дельтаплана, мы обеспечиваем и дополнительную лёгкость конструкции, и чрезвычайно простой запуск при любой погоде обычным включением тумблера, и вертикальный взлёт. Этим сразу привлечём внимание деловых людей к покупке и освоению данного транспорта. Не секрет, что дорог в России мало, особенно на Севере и за Уралом. Просторы огромны. Зимой — снежные заносы. Летом — множество рек, озер и водных, заболоченных преград. В России рынок пуст не только для легких самолетов, но и для любого транспорта: для аэросаней, глиссеров, аппаратов на воздушной подушке и т.д. Дешевые и максимально подвижные дельтапланы с удовольствием будут использоваться молодёжью местного населения для передвижения между деревнями и населёнными пунктами вместо мотоциклов, где дорог практически нет (а это 2/3 России), для этого стоит поработать. Правда при данном использовании игольчатого движителя для нейтрализации ионного потока придётся на выходе из сопла устанавливать нейтрализатор как у обычных электрореактивных двигателей.

Рис.2. Расположение движителей в корпусе Тесла-двигателя.

Такие электрореактивные игольчатые движители с пористыми кольцами, с шипящим выходом реактивной струи одинаково пригодны для самолётов и ракет. Высокая экономичность расхода топлива вне всякого сомнения обеспечит широкое распространение в данных областях техники, стоит только хотя бы одной компании начать их выпуск. При использования на самолётах игольчатых движителей возникнет проблема подачи свежего воздуха в салон для дыхания людей. Для этого придётся применить Тесла-компрессор, устройство которого изложено в предыдущей статье.

Для применения в качестве автодвигателя необходимо два игольчатых движителя расположить на ободе обыкновенного ротора в виде сегнерова колеса по рис.2, с толкающими соплами в противоположных направлениях. В силу подобного расположения на подшипниках вращения не будет никакого излишнего давления, кроме веса ротора. Используя опыт электрофорных машин не трудно подвести высокое напряжение от верхнего конца вторичной обмотки на турбину. Для этого надо укрепить медное кольцо на стеклотекстолитовой нижней щеке кожуха, соединив электрически с вторичкой , а с игольчатого электрода каждого движителя вывести к медному кольцу щёточку с токопроводящими волосинками (на рисунке не показано). Высокое напряжение и малый передаваемый ток позволяют без соприкосновения и без искры передавать необходимую энергию со вторички катушки Теслы. При мощностях более 10 киловатт можно установить и две, и три щётки у кольца, в зависимости от передаваемой мощности. На корпус защитного кожуха естественно подаётся минус напряжения от нижнего конца вторички с общим заземлением. Ионы газов получают львиную долю электронов с кожуха корпуса, нейтрализуются и вдоль по кожуху корпуса выходят в атмосферу. Здесь не требуется глушитель, поскольку газы имеют постоянную скорость, пульсаций газа не наблюдается. Правда есть небольшое шипение и относительно слабый треск от нечастых искровых разрядов. Через трубчатую ось подаётся любое газообразное или легко испаряющееся топливо, такие как бензин или спирт. Сюда же засасывается воздух из атмосферы, поскольку камеры сгорания движителей работают со стороны игольчатого электрода как вакуумные насосы газов за счёт высокой скорости истечения. Повышение температуры из-за горения топлива возле игл помогает степени ионизации газа в объёме камеры.

Электрооборудование такого двигателя аналогичное автомобильному. С генератора, приводимого механически во вращение от оси турбины, выходит постоянное напряжение 12 вольт преобразуется полупроводниками в переменное, и вместо катушки зажигания подаётся на . Расход на корону небольшой, примерно в 2 — 4 раза побольше обычного зажигания поршневого двигателя (в зависимости от мощности) и это основные потери, других потерь, кроме подшипников на оси ротора, практически нет, поэтому коэффициент полезного действия не менее 70 — 80%, что, несомненно, скажется на расходе топлива в сторону уменьшения. А это относительная экологическая чистота, значит, нам с вами в городах будет легче дышать. Кроме того, высокие скорости вращения ротора 20 — 50 тысяч оборотов в минуту делают установку легче поршневого автодвигателя в два, три раза при аналогичной мощности, значит, расход топлива и тут уменьшится при езде. В общем, выгоды применения Тесла-двигателя вполне очевидны.

Самая большая экономия — это изготовление таких двигателей. Катушки Теслы изготавливаются любителями на кухне. Покупной только конденсатор. Обмотки наматывают на пластмассовую водопроводную трубу. Ротор с движителями тоже можно свободно изготовить в любой мастерской с токарным станком и сварочным аппаратом. Единственная трудность заключается в только балансировке ротора, но можно быть уверенным, что «умельцы из гаражей» что нибудь тут же придумают, наверняка найдут предельно простое решение, у них это здорово получается. Пористая керамика для установки на отрицательное кольцо движителя есть на многих предприятиях, применяется для очистки сжатого воздуха, а керамический или фарфоровый корпус отрезается от изоляторов или старых реостатов, которые в избытке валяются в цехах ещё советских заводов. В последнее время в качестве изоляции для цепей высокого напряжения используют фторопласт. Он легко обрабатывается, держит напряжение во многих случаях даже лучше фарфора и работает с температурами почти до 400°С. Чтобы уменьшить размеры изоляторов разумно крепление провода делать как бы внутри изолятора (вытачивается выемка). Здесь, из-за утопленности крепления электрода поверхностный разряд по изолятору предельно затруднён, что обеспечивает достаточно надёжную работу.

Отсутствие трущихся деталей позволяет избавиться от масел различного типа применяемых на поршневых двигателях, что упрощает эксплуатацию. Если заменить подшипники качения на магнитные, тогда вообще можно забыть о смазке и заводу -изготовителю можно давать гарантию работы на 10 — 15 лет вперёд. Охлаждение происходит за счет вращения ротора в атмосферном воздухе с лопатками, укреплёнными на трубках крепления движителей к оси вращения.

Простая схема устройства и ремонта особенно хорошо способствует эксплуатации в сельской местности. Раньше, даже с поршневыми двигателями, на автомобилях устанавливались газогенераторы, которые, благодаря неполному сгоранию в их небольшой топке из-за ограниченного поступления воздуха, давали отличный дым-топливо. Несмотря на низкий КПД поршневых двигателей, этот дым двигал автомобиль на любых деревянных отходах, использовались даже солома и старая трава, подходящие гнилушки. Но в пятидесятых годах в России стало свободно с бензином и газогенераторы как-то отошли сами собой в силу того, что поршневые двигатели плохо заводились на дымном топливе. В нашей лесной стране Тесла-двигатель, с его высоким КПД, обязательно снова освоит «деревянную» специальность, поскольку возить бензин в деревни для 10 — 20 домов за десятки и сотни километров в тайге по болотистым дорогам слишком накладно.

Предлагаемая на рассмотрение конструкция Тесла-двигателя вероятно понравится многим, поскольку проста в изготовлении и бесшумна в работе, относится к области машиностроения, и может использоваться на ракетах, самолётах, автотранспорте для привода их в движение вместо применяемых химических реактивных, турбореактивных и поршневых двигателей, поэтому в заглавии стоит слово универсальный .

Никола Тесла – легендарный создатель в области электро- и радиотехнике, создатель переменного тока. В его честь, в 2003 году, была открыта компания по производству автомобилей, которые ездят на электричестве.

Технические характеристики

Основателем автомобильной компании Tesla стали Илон Маск, Джей Би Штробель и Марк Тарпеннинг. Прежде всего, основателям компании необходимо было разработать мощный электродвигатель и батареи, чтобы привести в работу ведущие колёса. Для создания первого прототипа автомобиля потребовалось почти 3 года.

Первый электрокар Tesla Roadster был презентован 19 июля 2006 года. Презентация автомобиля прошла успешно, но спортивный электрический автомобиль имел ряд недостатков. 2009 года была презентована 5-дверная Model S, двигатели которой устанавливаются на транспортные средства по этот день с небольшими доработками.

Технические характеристики силового агрегата электромобиля Tesla:

Обслуживание и эксплуатация

Обслуживание силового агрегата начинается с диагностики работоспособности электромотора, который непосредственно подключён к электронному блоку управления автомобилем. Если обнаружены ошибки, то мастера находят непосредственную причину. Сервисное и техническое обслуживание двигателей Тесла стоит проводить на сертифицированной станции, поскольку только у них имеется необходимое оборудование для всех ремонтно-диагностических и восстановительных операций.

Неисправности и ремонт

Ремонт, как и обслуживание, стоит проводить на специальном оборудовании у специалистов. Основными и частыми неисправностями является быстрая потеря ресурса батареи. Первые модели Тесла имели слишком малый запас энергии, а поэтому была высока вероятность «застрять» на трассе.

Ещё один факт – неисправность в системе автопилота. Эта проблема стала причиной гибели американского гражданина Джошуа Браун в 2016 году. Расследование причин аварии показало, что автопилот не видит поперечно идущий транспорт. Данная неисправность на стадии усовершенствования.

Забавные факты

Чтобы не делал человек, другой человек способен это изменить и модернизировать. Так и с засекреченными автомобильными технологиями. Джейсон Хьюз (Jason Hughes) большой поклонник Tesla и электромобилей компании. Но ему нравится не только кататься на таких электромобилях, но и знать, как они работают. Джейсон — довольно известная личность в сообществе поклонников Tesla. К примеру, именно ему удалось извлечь из обновлённой прошивки автомобиля некоторые данные о новой модели электромобиля. Если точнее, речь идёт про обнаружение записи «P100D» в прошивке Tesla 7.1.

Но сейчас ему удалось гораздо большее. Он смог достать задний привод Tesla Model S, и научился им управлять. Откуда получен привод, Хьюз не говорит, но это не так уж и важно. Гораздо более важно то, что он смог получить полный контроль над всеми функциями этого узла.

Первым шагом, в этом непростом проекте, стала подача питания на привод с одновременным сниффингом CAN-шины на предмет обнаружения отдельных команд управления. На это ушло около 12 часов, но, в конце концов, мотор удалось заставить вращаться. Мастеру пришлось повозиться — мало того, что данные работы движка пришлось расшифровывать, но и для управления его работой Джейсон написал специальное ПО. На этом этапе речь шла только о том, чтобы заставить движок работать. На то, чтобы перехватить и расшифровать команды CAN, у него ушло ещё 3 часа.

После этого дело пошло уже легче — Хьюзу удалось найти полный пакет команд управления. К примеру, он смог подключить систему водяного охлаждения, и приводил её в действие во время работы привода (в определённом режиме работы система заявляла о скорости в 188 километров в час). Двигатель удалось ввести и в режим генерации энергии. Система рекуперации энергии, введённая инженерами Tesla, позволяет во время машины в качестве генератора. Сейчас Джеймс может по своему усмотрению устанавливать различные параметры питания движка и генерации им энергии.

В итоге ему удалось даже создать собственную плату управления задним приводом. Интересно, что мотор был извлечён из автомобиля с прошивкой 7.1, которая включала ряд схем безопасности, предотвращающих вмешательство в нормальную работу системы. Но Джейсону удалось обойти эти препятствия.

Наиболее сложной задачей было заставить движок слушаться команд самодельного контроллера, но и это, оказалось, по силам умельцу. По его словам, он собрал свою плату буквально из мусора. Для того чтобы обезопасить движок, мастер использовал относительно низкий ампераж. Это не первый случай «хака» движка Tesla Model S. 11 месяцами ранее другому умельцу, Джеку Рикарду, также удалось заставить электромотор слушаться команд контроллера собственного изобретения. Но здесь речь идёт об использовании лишь двигателя и контроллера.

Стоит помнить, что обновлённая модель электромобиля Tesla Model S поставляется с 70 кВт·ч аккумулятором, который на самом деле имеет ёмкость в 75 кВт·ч, но часть батареи, если так можно выразиться, залочена программно. Компания продавала эти авто в течение месяца, и только сейчас об этом стало известно. Как же владелец такой машины может получить 5 дополнительных кВт·ч? Очень просто — доплатить $3250 для «разлочки».

Процесс апгрейда полностью программный, и производится «по воздуху». Работникам компании физический доступ к авто нужен только для того, чтобы сменить бейдж Tesla Model S 70 на бейдж Tesla Model S 75 (делается в сервисном центре). Идея компании проста, хотя и немного странная — позволить покупателям Tesla Model S 70 платить меньше на $3000, чем покупателям Tesla Model S 75. Причём «железо» у обеих моделей абсолютно одинаковое. В компании рассудили, что не всем нужна увеличенная ёмкость батареи, и тем, кому она не нужна, разрешили платить меньше. Разница в расстоянии, которое могут проехать обе модели в автономном режиме — около 35 км.

Кстати, не так давно для той же Tesla Model S было выпущено специальное программное обеспечение, позволяющее водителю управлять машиной при помощи «силы мысли». Мысленными командами можно заставить автомобиль проехать немного вперёд или же включить заднюю передачу. При этом считывание сигналов электрической деятельности мозга производится при помощи специального шлема. Сигналы анализируются специальной программой, после чего они передаются в бортовой компьютер для управления транспортным средством.

Вывод

Двигатель Тесла – представитель электрических автомобильных двигателей, который является . Обслуживание и ремонт проводятся только в условиях автосервиса. Это поможет избежать неприятностей.

асинхронный, синхронный или на постоянных магнитах?

Можно ли буксировать электромобили? Зависит от типа двигателя. Да, бывают разные. Если вы только собираетесь покупать электрокар, то знайте: до полной разрядки его лучше не доводить. И вот почему

Автомобили с двигателями внутреннего сгорания допускают буксировку. Если у вас механическая коробка передач, то это самое простое дело: ставите нейтраль в коробке передач или выжимаете сцепление – и ваш мотор оказывается физически отключен от колес, а машина превращается в обычную телегу: тяни не хочу.

С автоматами чуть сложнее, в них полного разрыва связи между колесами и мотором не предусмотрено. Но и они в режиме N позволяют буксировать машину на короткие расстояния и с невысокой скоростью.

Однако в инструкциях к электромобилям вы прочтете, что буксировка или не допускается вовсе, или, как в случае с современными моделями Tesla, допускается со скоростью не более 5 км/ч на расстояние не более 10 метров: иными словами, вы в праве только оттолкать сломанную машину на обочину.

А может ли быть иначе? Да, старые модели Tesla такое позволяли. Как и GM EV1 – легенда электрокаров 90-х годов прошлого века. Так в чем же дело? В типе электрических двигателей. Или, если уж говорить совсем правильно, электрических машин, так как в электромобилях эти устройства служат не только двигателями, но и генераторами. И на современных типах электрокаров встречается три типа таких устройств. Но для начала немного истории.

В 1821 году британский ученый Майкл Фарадей в своей статье впервые описал основные принципы преобразования электроэнергии в движение. Фарадей уже знал, что электрический ток, проходя через проволоку, создает магнитное поле. Закрученный в катушку, такой провод становится электромагнитом.

Он также знал, что противоположные полюса магнитов притягиваются, а одинаковые – отталкиваются. В электромагнитах же полярность зависит от направления движения тока, то есть ее можно быстро менять. И вот что придумал Фарадей. Берем магнит, который движется к другому. В последний момент полярность меняется, но рядом расположен третий магнит, к которому можно тянуться. Затем четвертый, пятый. Эти разнополярные магниты выстроены в линию. И если ее закольцевать, движение будет идти по кругу до тех пор, пока сквозь электромагниты идет ток и пока его направление не перестает меняться.

Чтобы понять, как это действует, представьте, что у вас в руках два школьных магнита в форме подковы или буквы U – помните, были такие. Если их повернуть друг к другу взаимоотталкивающимися полюсами, то они будут стремиться сделать полуоборот, чтобы снова друг к другу притянуться. А теперь представьте, что их полюса постоянно меняются местами: тогда они станут вертеться друг относительно друга. Это и есть электродвигатель.

Так впервые был описан принцип действия всех электромоторов в целом и самого древнего в частности: того, который работает от постоянного тока и использует с одной стороны постоянные магниты из намагниченного сплава, а с другой – переменные электромагниты. Это наш первый герой: мотор-генератор постоянного тока на перманентных магнитах.

Изобретения Фарадея были развиты его полседователями, в частности изобретателем электрической лампочки Томасом Эдисоном. Эдисон усовершенствовал генераторы постоянного тока и стал пионером в электрификации Нью-Йорка. В 1884 году на пороге его кабинета появился молодой сербский инженер. Звали иммигранта Никола Тесла.

Тесла предложил улучшить конструкцию Эдисона и попросил за работу 50 тысяч долларов – баснословная в те времена сумма. По легенде Эдисон согласился, но когда Тесла действительно существенно улучшил существующую модель, любимец Америки просто кинул безвестного сербского эмигранта.

Тесла рассердился и отправился к главному конкуренту, адепту переменного тока Джорджу Вестингаузу. Так началась «Война токов», окончательно проигранная постоянным током только в 2007 году, когда Нью-Йорк последним из городов перешел на ток переменный.

Генераторы Эдисона вырабатывали электричество с напряжением, близким к потребительскому: 100-200 вольт. Это удобно для домов, но его сложно передавать на большие расстояния из-за сопротивления проводов. Тут было два решения: увеличивать диаметр кабелей или повышать напряжение. Первый вариант позволял делать линии длинной 1,5 километра. Да, совсем немного. Второй вариант был невозможен из-за отсутствия в те годы эффективных способов повышения напряжения постоянного тока.

Однако еще в 1876 году русский ученый Павел Яблочков изобрел трансформатор, меняющий напряжение переменного тока. Подача энергии на большие расстояния перестала быть проблемой.

Но была другая проблема. Лампочкам Эдисона все равно от какого тока питаться: постоянного или переменного. А вот с электродвигателями сложнее: они в те годы требовали только постоянного. В 1888 году Тесла запатентовал в США асинхронный электрический двигатель переменного тока. Он же изобрел и синхронный генератор, впоследствии использованный и как двигатель. Это второй и третий герои нашей статьи.

Так поговорим же о них поподробнее

Если в детстве вам доводилось разбирать игрушечные электрические машинки, то вы должны помнить устройство их простейших двигателей. Для остальных напомним. Все применяемые в электромобилях моторы состоят из двух частей: неподвижного статора и вращающегося ротора.

В игрушечных машинах на статоре стоят постоянные магниты, а на роторе – электрические переменные. При вращении на них через специальные щетки подается постоянный ток от батареек, и их последовательное включение и обеспечивает движение.

Похожая конструкция встречается практически у всех электромобилей. С одним отличием: на роторе там стоят постоянные магниты, а на статоре, напротив, электрические и переменные. Так в том числе можно избавиться от щеток: одного из немногих элементов электродвигателя, который подвержен износу.

Преимущество моторов на постоянных машинах в том, что они легкие, компактные, мощные, эффективные, работают от вырабатываемого аккумуляторами постоянного тока… так, стоп! А какие недостатки?

Недостаток прост. Таким моторам не хватает тяги. Так перейдем же к асинхронным инверсионным моторам переменного тока.

Бородатый анекдот про умирающего мастера заваривать чай, который делился своим секретом словами «не жалейте заварки» – это прям притча про компанию Tesla. Вопреки расхожему мнению, ее основал не Илон Маск (он позже стал главным инвестором и владельцем), а Мартин Эберхард и его партнер Марк Тарпенинг.

Эти двое придумали немыслимое. Создать не тихоходный, эффективный и относительно дешевый электрокар, а дорогой, быстрый и клевый. Маск же первым идею оценил и быстро прибрал ее к рукам.

Имя компании Tesla не случайно. Одной из ее технических революций стало использование асинхронного двигателя без постоянных магнитов, работающего на переменном токе – того самого, который изобрел Никола Тесла. Эта конструкция дороже как сама по себе, так и благодаря необходимости в установке преобразователя постоянного тока от батареи в переменный для электродвигателя. Успешное решение данной задачи и стало первым из множества теперь уже легендарных прорывов «Теслы».

Благодаря мощному асинхронному мотору электрокары Tesla с самого начала были очень динамичным, что стало ключевой причиной роста их популярности. В таком моторе переменный ток в обмотке статора создает вращающееся магнитное поле. Оно вызывает индукцию в роторе, заставляя его вращаться чуть медленнее, чем вращение самого поля – поэтому двигатель и называется асинхронным. Если скорости вращения синхронизируются, поле перестает создавать в роторе индукцию, и он начинает замедляться, рассинхронизируясь обратно. Важно заметить, что собственно на ротор никакого электричества напрямую не подается.

Итак, есть еще третий тип электрического двигателя, который встречается в современных электромобилях: синхронный на электромагнитах. Он похож по устройству на двигатели с постоянными магнитами на роторе, только эти магниты – электрические. На них подается постоянный ток, так что полярность магнитов ротора остается неизменной. А вот полярность магнитов статора, напротив, меняется, что и обеспечивает вращение.

Такие синхронные моторы на электромагнитах славятся своей способностью обеспечивать стабильность оборотов и ставятся, обычно, на всякие установки вроде насосов. А еще… на электрокар Renault Zoe. Зачем? Честно сказать, найти быстрый ответ на этот вопрос не получилось. Можем лишь предположить, что это связано с лучшей способностью такого двигателя служить генератором, рекуперируя энергию торможения. Мотор на Zoe не самый мощный, а мощным генератором он быть обязан.

Так что же лучше? Большинство автоконцернов выбирает моторы на постоянных магнитах: они эффективнее. Tesla в первые годы настаивала на асинхронных моторах. Но потом… сделала ставку на двух моторную полнопривродную схему, в которой асинхронный мотор обеспечивает динамику, а двигатель на постоянных магнитах гарантирует низкий расход энергии при небольших нагрузках. И только Renault… ну вы поняли.

А теперь о том, что ждет нас дальше. При буксировке даже обесточенный двигатель на постоянных магнитах тут же начинает работать как генератор, что чревато перегревом и возгоранием энергосистемы электромобиля. В синхронных моторах Renault оставшейся магнетизм в роторе также способен вызвать индукцию в катушках статора, ну и пошло поехало – генерация тока, перегрев, пожар.

И только асинхронные двигатели, когда их статоры не под напряжением, не являются генераторами: их можно буксировать.

Так вот, современная тенденция такова. Моторы на постоянных магнитах становятся все мощнее и тяговитее, оставаясь самыми эффективными. Производители постепенно переходят на них. Но придумать, как машины с ними безопасно буксировать инженерам еще предстоит. Пока они декларируют принцип «Наши электромобили не ломаются и в буксировке не нуждаются». Но звучит не больно убедительно.

Двигатель электромобиля — принцип работы, устройство, виды

По планам многих автоконцернов – именно за тяговым двигателем для электромобиля – будущее. Так известно, что в плане развития известного гиганта Bentley Motors значится, что к 2030-му году компания полностью трансформируется в производителя электроавтомобилей. На электродвигатели ставки также делают такие известные на весь мир компании, как Nissan, Volvo, Aston Martin. 

Тенденции таковы, что в массовом производстве сейчас больше представлены легковые электромобили и городской электротранспорт (согласно планам, в ряде таких стран как, к примеру, Франция и Норвегия в 2025-2030-м гг. автобусы в городах будут полностью заменены на электротранспорт).

Но чувствуется интерес и к установке электромоторов на грузовой транспорт. Особенно электродвигатели интересны производителям городских развозных фургонов, терминальных тягачей и коммунальных грузовиков.

На весь мир уже хорошо известен седельный тягач капотного типа Tesla Semi, в коммунальном хозяйстве США активно не первый год используют мусоровозы PETERBILT на электротяге, в Евросоюзе возрастает интерес к седельному тягачу с электродвигателем Emoss Mobile Systems B.V. и Renault Trucks –развозному автомобилю для продуктов.

На постсоветском пространстве свой коммерческий электротранспорт пока только начинает появляться, но уже активно говорят про грузовик МАЗ-4381Е0 (на грузовике установлен асинхронный тяговый электродвигатель мощностью 70 кВт (95 л.с.), ориентированный на транспортировку грузов в черте города, и электрогрузовик Moskva опытно-конструкторского бюро Drive Electro (главное назначение — доставка товаров в магазины). Не за горами время, когда этот коммерческий транспорт с электромоторами будет активно востребован автопарками, логистическими центрами, предприятиями.

Также, безусловно, давно, как данность мы принимаем, что на электродвигателе работают трамваи, троллейбусы, погрузчики на складах и локомотивы. Трёхфазный асинхронный двигатель помогает двигаться на давно полюбившихся поездах «Ласточка» и «Сапсан».

Принцип работы

Принцип работы двигателя электромобиля основан на преобразовании электроэнергии в механическую энергию вращения. Главные участники преобразования энергии – статор и ротор.

Как работает традиционный электромотор?

  1. Магнитное поле статора действует на обмотку ротора.
  2. Возникает вращающий момент.
  3. Ротор начинает двигаться.

Наглядная схема двигателя электромобиля в системе электропривода представлена ниже:

Важная особенность классического электрокара – отсутствие дифференциала, коробки передач, передаточных устройств с шестеренками. Энергия от электромотора поступает прямо на колеса.

Без коробки передач – и большинство «гибридов» с электродвигателем и ДВС. Исключение – «гибриды» с параллельной схемой передачи на колёса крутящего момента. К ней мы ещё вернёмся в этой статье в разделе, посвящённом гибридным автомобилям.

Принцип работы любого электродвигателя базируется на процессах взаимного притяжения и отталкивания полюсов магнитов на роторе и статоре. Движение осуществляется под действием самого магнитного поля и инерции.


Устройство

Как устроен двигатель электромобиля?

При описании принципа работы электродвигателя, уже было упомянуто, что главные компоненты двигателя электромобиля– ротор и статор.

  1. Ротор – это вращающийся компонент двигателя.
  2. Статор находится в неподвижном состоянии. Он ответственен за создание неподвижного магнитного поля.

Ротор

Классический ротор автомобиля состоит из сердечника, обмотки и вала. У некоторых электродвигателей в состав ротора также входит коллектор.
  • Сердечник – это металлический стержень, на периферии которого располагается обмотка. Непосредственно через сердечник происходит замыкание магнитной цепи электродвигателя. Сердечник изготавливается из стальных пластин круглой формы. По структуре похож на слоёный пирог. При производстве сердечников используют изолированные листы стали с присадками кремния. В этом случае обеспечены увеличение КПД электродвигателя, наименьшие удельные потери в металле на единицу массы, снижение величины размагничивающих вихревых токов Фуко, которые возникают из-за перемагничивания сердечника. На поверхности сердечника есть продольные пазы. Через них прокладывается обмотка.
  • Вал – металлический стержень, который непосредственно передаёт вращающий момент. Также изготавливается из электротехнической стали. Служит основой для насаживания сердечника. На концах вала есть резьба, выемки под шестерёнки, подшипники качения, шкивы.
  • Коллектор – блок, крепящийся на валу. Представляет собой систему медных пластин. Изолирован от вала. Служит выпрямителем переменного тока, переключателем-автоматом направления тока (в зависимости от вида электродвигателя).

Статор (индуктор)

Статор состоит из станины, сердечника и обмотки:
  • Станина статора – корпус статора. Как правило, корпус бывает алюминиевым или чугунным. Алюминиевые станины популярны у электродвигателей легковых авто, чугунные – у спецтехники, которая вынуждена работать в условиях высокой вибрации. Станина служит базой крепления основных и добавочных полюсов.
  • Сердечник статора – цилиндр из профилированных стальных листов. Фиксируется винтами внутри станины. Снабжён пазами для обмотки.
  • Обмотка. Создаёт магнитный поток. При пересечении проводников ротора наводит в них электродвижущую силу.

Виды

Электродвигатели классифицируют по типу питания привода, конструкции щеточно-коллекторного узла, количеству фаз для запитывания:
  • По типу питания привода. Устройства делятся на моторы переменного и постоянного тока. Двигатели постоянного тока способны обеспечить более точную и плавную регулировку оборотов, высокий КПД. Двигатели переменного тока выручают, когда важна высокая перегрузочная способность. Это удачный вариант для подъёмно-транспортных машин. Впрочем, существуют и универсальные моторы, которые функционируют от переменного и постоянного тока.
  • По конструкции щеточно-коллекторного узла. Выпускаются бесколлекторные и коллекторные моторы. Бесколлекторный мотор работает за счёт движения ротора с постоянным магнитом. У конструкции нет щеточно-коллекторного узла. Решение обеспечивает достойный крутящий момент, широкий диапазон скоростей и высокий КПД. Важные преимущества бесколлекторного мотора – надёжность, способность к самосинхронизации, возможность подпитываться при переменном напряжении. Ресурс бесколлекторного мотора ограничен исключительно ресурсом подшипников. У коллекторных моторов присутствует щелочно-коллекторный узел. Удобство решения связано с тем, что он может использоваться и в качестве переключателя тока в обмотках, и как извещатель положения ротора, нет необходимости в контролле. Проблема коллекторных моделей – в том, что они зависимы от постоянных магнитов, которые, как известно, со временем, к огромному сожалению, теряют свои свойства.
  • По количеству фаз для запитывания. В зависимости от того, как запитывается обмотка, электродвигатели бывают однофазными и трёхфазными. В автомобилестроении широкое распространение получили трёхфазные решения, это связано с рядом технических характеристик (мощность, перегрузочная способность, частота вращения на холостом ходу).
Обратите внимание! Работать трёхфазные моторы могут синхронно и асинхронно, а в качестве ротора используются как короткозамкнутые, так и фазные модели. Самый популярный вариант – трехфазные асинхронные моторы с короткозамкнутым ротором. Они стоят на большинстве современных электрокаров.

Асинхронные и синхронные двигатели

Синхронные моторы – двигатели переменного тока, у которых частота вращения ротора идентична частоте вращения магнитного поля (измерение производится в воздушном зазоре). В автомобилестроении синхронные моторы встретить можно нечасто (хотя в мире техники – это, в целом, очень популярное решение – особенно в климатотехнике, насосных системах).

Но есть производители авто, которые при производстве электрокаров предпочитают устанавливать на свои машины именно синхронные двигатели. Яркий пример – концерн Renault. Синхронными двигателями на электромагнитах он оснастил электрокар Renault Zoe. На электромагниты подаётся постоянный ток. Полярность магнитов ротора стабильна. Полярность магнитов статора при этом изменяется и обеспечивает бесперебойное вращение.

Преимущество синхронных двигателей на электромагнитах у авто – максимальная оптимизация рекуперации энергии торможения. И главный «конёк» авто с таким типом электродвигателя – полная безопасность при буксировке.

Гораздо более популярный вариант – асинхронные двигатели. Это двигатели переменного тока, у которых потенциал напряжения – магнитного поля не совпадает с частотой вращения ротора. Типичным 3-фазным асинхронным двигателем оснащены, например, хорошо известные автомобили Tesla S и Tesla Х.

Иногда асинхронные моторы называют индукционными, так как в роторе в соответствие с законом Ленца у них индуцируется электромагнитная сила.

Двигатель-колесо

Обособленно среди электромоторов стоит двигатель-колесо. Особенность двигателя- колеса – ориентир крутящего момента и силы напряжения на конкретное колесо.

Такие решения можно встретить в плагин-гибридных автомобилях («гибридах» с параллельной схемой, при описании устройства гибридных авто ниже по тексту мы остановимся на них подробнее). Работает двигатель-колесо в паре с ДВС.

У первых плагин-гибридных автомобилей с двигателем-колесом агрегат был монтирован в ступицу колеса, а работа осуществлялась исключительно в паре с внутренним зубчатым редуктором.

Некоторые же современные модели моторов, монтируемые внутри колёс, вполне могут работать без зубчатого редуктора. Это увеличивает управляемость, позволяет избежать увеличения удельного веса шасси, уменьшить риски, повышает КПД.

Преимущества и недостатки электродвигателей

Преимуществ у электродвигателей существенно больше, нежели недостатков. Более того, за счёт усовершенствования и конструктивных особенностей самих электроприводов, и инфраструктуры, связанной с зарядкой, многие вещи, которые вчера ещё казались критичными, сегодня теряют свою актуальность.

Преимущества

  • Не требуется «раскачка». Крутящий момент достигает максимума непосредственно при включении. Именно по этой причине электрический двигатель электромобиля не требует наличия стартеров и сцеплений – неотъемлемых спутников ДВС.
  • Удобство. Для включения заднего хода (то есть коррекции со стороны вращения мотора) достаточно поменять полярность, сложная коробка передач не требуется.
  • Высокий КПД. У машин с электродвигателями он достигает 95 %.
  • Независимость. На любой отметке скорости достигается максимальный показатель крутящего момента.
  • У мотора – малый вес. Производители могут себе легко позволить создавать компактные автомобили.
  • Есть все возможности для рекуперации энергии торможения. Если у авто с ДВС кинетическая энергия просто уходит в колодки (и стирает их), то у электромобиля в режиме рекуперации мотор может функционировать как генератор. В режиме генерации электроэнергия просто трансформируется в другую форму и быстро накапливается в АКБ. Особенно решение эффективно для транспортных средств с длинным тормозным путем. На объём генерируемой и накопленной энергии существенно влияет маршрут (рельеф, в частности наличие холмистых участков на дороге и уклон дороги).
  • Снижение расходов на эксплуатацию машины. Зарядку можно производить от электросети. Это существенно дешевле, нежели использование дизеля, бензина. Выгода очевидна даже по сравнению с бензиновыми авто эконом-класса.
  • Малый уровень шума.
  • В большинстве случаев для мотора не требуется принудительное охлаждение.
  • Экологичность. Использование транспорта с электродвигателем снижает количество выхлопных газов в воздухе.

Недостатки

Долгое время считалось, что самый большой минус использования электродвигателя – его зависимость от аккумуляторов, которые быстро выходят из строя. Теперь это неактуально. Современные батареи электрокаров, представленных в массовом выпуске, гарантируют пробег автомобиля 150-200 тыс. км. Потерял актуальность и тот фактор, что машины с электродвигателем существенно уступают бензиновым по мощности. Электротяга современных электромоторов уже не уступает ДВС.

Поэтому недостатки электродвигателей сейчас правильно свести не к недостаткам конструкции, а к плохо развитой инфраструктуре для того, чтобы подзаряжать электромобили. Если в США, Скандинавии подзарядить электрокар легко, то до недавнего момента даже в Западной и Центральной Европе с инфраструктурой для подзарядки таких машин были проблемы.

В России, Беларуси, Украине, Казахстане, пока, увы, с инфраструктурой ситуация ещё хуже. Хотя, например, в России число заправок для электрокаров с 2018 по 2020 год возросло в 3 раза, но полотно покрытия площадками для зарядки очень неоднородное. В Москве – более плотное, в регионах – слабое. Даже разрыв с такими городами-гигантами как Санкт-Петербург и Челябинск — колоссальный.

Устройство электромобиля

Рассматривая электродвигатель, важно остановиться на устройстве электромобиля в целом, изучение электродвигателя не самого по себе, а как части системы электропривода, где электродвигатель – один из его базовых компонентов, его «сердце». Но «организм», функционирует только тогда, когда в порядке все другие «органы» – части электропривода:
  • Аккумуляторная батарея.
  • Бортовое зарядное устройство. Его функция – обеспечение возможности заряжать аккумуляторную батарею от бытовой электрической сети.
  • Трансмиссия. Распространены трансмиссия с одноступенчатым зубчатым редуктором (чаще всего встречающийся и наиболее простой вариант) и бесступенчатая трансмиссия с гидротрансформатором (для старта с места), плавно изменяющие отношение скоростей вращения и вращающих моментов мотора и ведущих колес транспортного средства во всём рабочем диапазоне скоростей и тяговых усилий.
  • Инвертор. Назначение инвертора – трансформирование высокого напряжения постоянного тока аккумулятора в трехфазное напряжение переменного тока.
  • Преобразователь постоянного тока. Функция – зарядка дополнительной батареи, которая используется для системы освещения, кондиционирования, аудиосистемы.
  • Электронная система управления (блок управления). Отвечает за управление функциями, связанными с энергосбережением, безопасностью комфортом. В её «подчинении» – оценка заряда АКБ, оптимизация режимов движения, регулирование тяги, контроль за использованной энергией и за напряжением, управлением ускорением и рекуперативным торможением.

Аккумуляторная батарея

Аккумуляторная батарея (аккумулятор) – один из наиболее дорогих компонентов системы. По своей значимости играет такую же роль, как бензобак для ДВС. Электромобиль движется за счёт электричества, полученного от электросети во время зарядки и хранящегося в АКБ.

При этом важно помнить, что у большинства электромобилей устанавливаются одновременно два аккумулятора: один тяговой – он питает именно мотор и стартерный (как и в машинах с ДВС, он помогает системе освещения, системе подогрева). Эти аккумуляторы разные не только по назначению, но и техническим характеристикам.
Тяговый аккумулятор электрического двигателя электромобиля предназначен для питания мотора, запуска двигателя. У него нет высокого пускового тока, но он заточен на длительную работу, выдерживает большое количество циклов заряда-разряда.

Типичная тяговая АКБ – моноблочная секционная конструкция. Тяговая АКБ состоит из толстых электронных пластин – пористых сепараторов и электролитного вещества.
Самые распространенные аккумуляторы – литий-ионные. У них – наиболее высокая энергетическая плотность, не требуется обслуживание, достаточно низкий саморазряд.

Устройство и особенности гибридных систем


Свои особенности – у гибридных систем. В гибридных системах электродвигатель может рассматриваться и как «партнёр» ДВС, и как допэлемент, помогающий добиться экономии топлива и при этом повышения мощности.

Устройство «гибрида» отличается в зависимости от реализованной схемы передачи на колёса крутящего момента.

  • Параллельная. Аккумуляторы передают энергию электромотору, бак – топливо для ДВС. Оба агрегата равноправны и способны создать условия для перемещения авто. Но работает такая схема только при наличии коробки передач. Параллельная схема успешно реализована у автомобиля Honda Civic. Нередко гибриды с параллельной схемой выделяют в отдельную группу и называют плагин-гибридными.

  • Последовательная. Любое действие начинается с включения ДВС. Он же отвечает за последующие действия: поворот генератора для запуска электромотора, зарядку аккумуляторов.


  • Последовательно-параллельная. Через планетарный редуктор соединены ДВС, электродвигатель и генератор. В зависимости от условий движения может использоваться тяга электродвигателя или ДВС. Режим выбирается программно системой управления транспортного средства. Среди хорошо известных последовательно-параллельных «гибридов» – Toyota Prius, Lexus-RX 400h.

Классический гибридный автомобиль использует интегрированный в трансмиссию электрический мотор-генератор.

При этом для получения электрической тяги у гибридных систем задействованы четыре базовых компонента:

  • Мотор-генератор. Является обратимой силовой установкой. Может работать в двух режимах: непосредственно тягового мотора и генератора для зарядки высоковольтной аккумуляторной батареи. При работе в режиме мотора возможно создание крутящего момента и мощности, которых хватит для старта и движения автомобиля с выключенным ДВС, при работе устройства в режиме генератора продуцируется высоковольтная электроэнергия.
  • Высоковольтные силовые кабели. Изолированные электрические кабели большого сечения. Важны для переноса энергии между компонентами высоковольтных электроцепей.
  • Высоковольтные аккумуляторные батареи. Включенные в последовательную цепь аккумуляторные элементы. Позволяют накопить в батарее большой объём электроэнергии.
  • Высоковольтный силовой модуль управления для управления потоком электроэнергии для движения транспортного средства на электрической тяге.

Гибридные авто открывают новые эксплуатационные возможности, с одной стороны можно быть максимально экологичным, радоваться комфортной езде и сэкономить на топливе, а с другой стороны, при разряде аккумулятора владелец авто не попадёт впросак, если невозможно подзарядить мотор: в работу вступит ДВС.

Перспективы применения электродвигателей в автомобилях

Перспективы применения электродвигателей в автомобилях напрямую связаны с тем, насколько активно будет развиваться инфраструктура. Там, где она не обеспечена, использование электрокаров действительно ограничено. Ведь без подзарядки у многих авто – малая дальность пробега.

Впрочем, даже последняя проблема активно решаемая. Немецкие и японские разработчики (компании DBM Energy, Lekker Energie, Japan Electric Vehicle Club) сумели доказать миру: потенциал у электродвигателей, аккумуляторов без подзарядки может достигать 500 -1000 тысяч километров пробега. Правда, пока что 1 000 тысяч км пробега без подзарядки возможны только в теории, а 500-600 уже на практике.

На данный момент доступность такого транспорта – на уровне инженерно-конструкторской работы, экспериментальных выпусков, но есть перспективы что их подхватят автогиганты, и не за горизонтом – серийное производство.

Перспективы применения электродвигателей в автомобилях очень тесно связаны и с политикой отдельных государств. Например, в Норвегии обладатели электромобилей освобождены от уплаты ежегодного налога на транспорт, пользования платными дорогами, паромными переправами и даже большинством парковок. С учётом того, что налоги и тарифы в Скандинавии одни из самых высоких, мотивация приобрести именно авто с электродвигателем, а не ДВС – очень высокая.

Обратите внимание, что на базе LCMS ELECTUDE есть специальный раздел “Электрический привод”, в нём подробно разбираются электродвигатели, виды электропривода, системы зарядки, особенности обслуживания транспорта с электромотором. Кроме комплексных теоретических знаний в обучающих модулях приводятся многочисленные практические примеры.

Электродвигатель автомобиля тесла принцип работы. Разгадка электромобиля николы тесла

В Tesla Model 3 будут использоваться аккумуляторы последней модификации с «Гигафабрики Tesla»

Компания Tesla собирается устанавливать в своих новых электромобилях Tesla Model 3 аккумуляторы, которые производятся сейчас на «Гигафабрике» из Невады. Новые силовые агрегаты, как обещает компания, будут более мощными и эффективными. Преобразователь был разработан с нуля, предыдущие модели, которые работали в той же Tesla Model S, не используются. Новое здесь все, включая полупроводниковые элементы системы. Инженерам компании удалось снизить количество уникальных элементов инвертора примерно на 25%, что позволяет удешевить конструкцию.

Кроме того, Model 3 получила 435-сильный электромотор. Об этом сообщил технический директор Tesla. Это даже больше, чем у BMW M3, где установлен трехлитровый шестицилиндровый твин-турбо двигатель (максимум — 431 л.с.). Благодаря мощному мотору самая медленная модификация модели сможет разгоняться до 96 километров в час всего за 6 секунд. У старшей модели с продвинутым режимом Ludicrous Mode на разгон до этой скорости уйдет всего 4 секунды.


Электронные компоненты инвертора (полевые транзисторы с изолированным затвором)

Инженеры компании уже несколько месяцев работают над созданием нового инвертора Model 3 мощностью 320 КВт. В конструкции инвертора используются биполярные транзисторы TO-247 с изолированным затвором. Эти электронные компоненты использовались в конструкции инвертора для Tesla Model X и Tesla Model S. Производство инверторов уже стартовало, запущены производственные линии и для других компонентов, поскольку компания собирается поставить около 500000 электромобилей к 2018 году.

Без подзарядки новая модель сможет проезжать от 340 до 400 километров, что очень неплохо. Изначально на рынок будет поставляться версия с запасом хода в 340 километров, после чего появится модель с аккумулятором емкостью в 80 КВт·ч. С этим аккумулятором электромобиль сможет пройти и 480 километров. Кроме того, новинка получает автопилот. И хотя он и не превратит электромобиль в робомобиль, помощь автомобилисту будет оказываться довольно серьезная.

Сейчас компания уже проводит тестирование своего нового электромобиля. К примеру, недавно именно такую модель сфотографировали в одном из сервисных центров компании. По внешнему виду она ничем не отличается от демонстрационного образца.

Отгружать Model 3 покупателям начнут не ранее конца 2017 года. Предзаказов на электромобиль поступило в несколько раз больше планируемого — на данный момент более 375 тысяч. Неясно, способна ли Tesla Motors справиться с такой нагрузкой без срыва сроков. Вполне возможно, что будут срывы сроков. По Model X проблемы были еще в первом квартале — вместо 4500 электромобилей компания смогла поставить 2400. Тем не менее Илон Маск обещает постепенно нарастить производственные мощности, чтобы заказчики любых моделей электромобиля получали свои транспортные средства точно в срок.

Никола Тесла – легендарный создатель в области электро- и радиотехнике, создатель переменного тока. В его честь, в 2003 году, была открыта компания по производству автомобилей, которые ездят на электричестве.

Технические характеристики

Основателем автомобильной компании Tesla стали Илон Маск, Джей Би Штробель и Марк Тарпеннинг. Прежде всего, основателям компании необходимо было разработать мощный электродвигатель и батареи, чтобы привести в работу ведущие колёса. Для создания первого прототипа автомобиля потребовалось почти 3 года.

Первый электрокар Tesla Roadster был презентован 19 июля 2006 года. Презентация автомобиля прошла успешно, но спортивный электрический автомобиль имел ряд недостатков. 2009 года была презентована 5-дверная Model S, двигатели которой устанавливаются на транспортные средства по этот день с небольшими доработками.

Технические характеристики силового агрегата электромобиля Tesla:

Обслуживание и эксплуатация

Обслуживание силового агрегата начинается с диагностики работоспособности электромотора, который непосредственно подключён к электронному блоку управления автомобилем. Если обнаружены ошибки, то мастера находят непосредственную причину. Сервисное и техническое обслуживание двигателей Тесла стоит проводить на сертифицированной станции, поскольку только у них имеется необходимое оборудование для всех ремонтно-диагностических и восстановительных операций.

Неисправности и ремонт

Ремонт, как и обслуживание, стоит проводить на специальном оборудовании у специалистов. Основными и частыми неисправностями является быстрая потеря ресурса батареи. Первые модели Тесла имели слишком малый запас энергии, а поэтому была высока вероятность «застрять» на трассе.

Ещё один факт – неисправность в системе автопилота. Эта проблема стала причиной гибели американского гражданина Джошуа Браун в 2016 году. Расследование причин аварии показало, что автопилот не видит поперечно идущий транспорт. Данная неисправность на стадии усовершенствования.

Забавные факты

Чтобы не делал человек, другой человек способен это изменить и модернизировать. Так и с засекреченными автомобильными технологиями. Джейсон Хьюз (Jason Hughes) большой поклонник Tesla и электромобилей компании. Но ему нравится не только кататься на таких электромобилях, но и знать, как они работают. Джейсон — довольно известная личность в сообществе поклонников Tesla. К примеру, именно ему удалось извлечь из обновлённой прошивки автомобиля некоторые данные о новой модели электромобиля. Если точнее, речь идёт про обнаружение записи «P100D» в прошивке Tesla 7.1.

Но сейчас ему удалось гораздо большее. Он смог достать задний привод Tesla Model S, и научился им управлять. Откуда получен привод, Хьюз не говорит, но это не так уж и важно. Гораздо более важно то, что он смог получить полный контроль над всеми функциями этого узла.

Первым шагом, в этом непростом проекте, стала подача питания на привод с одновременным сниффингом CAN-шины на предмет обнаружения отдельных команд управления. На это ушло около 12 часов, но, в конце концов, мотор удалось заставить вращаться. Мастеру пришлось повозиться — мало того, что данные работы движка пришлось расшифровывать, но и для управления его работой Джейсон написал специальное ПО. На этом этапе речь шла только о том, чтобы заставить движок работать. На то, чтобы перехватить и расшифровать команды CAN, у него ушло ещё 3 часа.

После этого дело пошло уже легче — Хьюзу удалось найти полный пакет команд управления. К примеру, он смог подключить систему водяного охлаждения, и приводил её в действие во время работы привода (в определённом режиме работы система заявляла о скорости в 188 километров в час). Двигатель удалось ввести и в режим генерации энергии. Система рекуперации энергии, введённая инженерами Tesla, позволяет во время торможения использовать двигатель машины в качестве генератора. Сейчас Джеймс может по своему усмотрению устанавливать различные параметры питания движка и генерации им энергии.

В итоге ему удалось даже создать собственную плату управления задним приводом. Интересно, что мотор был извлечён из автомобиля с прошивкой 7.1, которая включала ряд схем безопасности, предотвращающих вмешательство в нормальную работу системы. Но Джейсону удалось обойти эти препятствия.

Наиболее сложной задачей было заставить движок слушаться команд самодельного контроллера, но и это, оказалось, по силам умельцу. По его словам, он собрал свою плату буквально из мусора. Для того чтобы обезопасить движок, мастер использовал относительно низкий ампераж. Это не первый случай «хака» движка Tesla Model S. 11 месяцами ранее другому умельцу, Джеку Рикарду, также удалось заставить электромотор слушаться команд контроллера собственного изобретения. Но здесь речь идёт об использовании лишь двигателя и контроллера.

Стоит помнить, что обновлённая модель электромобиля Tesla Model S поставляется с 70 кВт·ч аккумулятором, который на самом деле имеет ёмкость в 75 кВт·ч, но часть батареи, если так можно выразиться, залочена программно. Компания продавала эти авто в течение месяца, и только сейчас об этом стало известно. Как же владелец такой машины может получить 5 дополнительных кВт·ч? Очень просто — доплатить $3250 для «разлочки».

Процесс апгрейда полностью программный, и производится «по воздуху». Работникам компании физический доступ к авто нужен только для того, чтобы сменить бейдж Tesla Model S 70 на бейдж Tesla Model S 75 (делается в сервисном центре). Идея компании проста, хотя и немного странная — позволить покупателям Tesla Model S 70 платить меньше на $3000, чем покупателям Tesla Model S 75. Причём «железо» у обеих моделей абсолютно одинаковое. В компании рассудили, что не всем нужна увеличенная ёмкость батареи, и тем, кому она не нужна, разрешили платить меньше. Разница в расстоянии, которое могут проехать обе модели в автономном режиме — около 35 км.

Кстати, не так давно для той же Tesla Model S было выпущено специальное программное обеспечение, позволяющее водителю управлять машиной при помощи «силы мысли». Мысленными командами можно заставить автомобиль проехать немного вперёд или же включить заднюю передачу. При этом считывание сигналов электрической деятельности мозга производится при помощи специального шлема. Сигналы анализируются специальной программой, после чего они передаются в бортовой компьютер для управления транспортным средством.

Вывод

Двигатель Тесла – представитель электрических автомобильных двигателей, который является самым мощным электромотором в мире. Обслуживание и ремонт проводятся только в условиях автосервиса. Это поможет избежать неприятностей.

Важным фактором роста акций TSLA на Nasdaq стало то, как работает электродвигатель.

Как работает электродвигатель Tesla?

Tesla Roadster использует трёхфазный асинхронный электродвигатель с переменным напряжением. В отличие от некоторых других моторов, использующих постоянные магниты, двигатель Roadster основан на магнитном поле, созданном целиком за счёт электричества.

У электромотора Tesla есть ротор и статор. Ротор — это стальная втулка, через которую пропущены медные пластины, позволяющие току перетекать с одной стороны ротора на другую. Электричество на ротор напрямую не подаётся. Ток возникает при прохождении проводника из медных пластин через магнитное поле, которое создаётся переменным током в статоре. Вращением втулки приводятся в движение колёса.
Статор — это тонкие стальные пластины, через которые проведена медная обмотка из проволоки. По ней в двигатель поступает электричество из модуля питания. Провода делятся на три вида по числу фаз электричества, которые можно представить себе в виде волн синусоидальных колебаний, гладкое сочетание которых обеспечивает бесперебойную подачу электроэнергии.

Переменный ток в медной обмотке статора создаёт вращающееся магнитное поле и вызывает поток частиц в роторе. Ток порождает второе магнитное поле в роторе, который следует за движущимся полем статора. Результатом этого процесса становится вращающий момент.

Когда водитель нажимает на педаль газа, модуль питания ставит поле статора позади поля ротора. Вследствие этого ротору приходится замедлиться для того, чтобы его поле вышло на уровень поля статора. Направление тока в статоре меняется, и начинается поток энергии через модуль питания обратно в батарею. Это называется регенерацией энергии.

Мотор выступает то генератором, то двигателем, в зависимости от действий водителя. При нажатии педали газа, модуль питания ощущает потребность во вращающем моменте. Если педаль нажата на 100%, доступный вращающий момент выбирается полностью, а если нет, тогда частично. Если не газовать, двигатель будет использоваться для восстановления энергии. Мотором он становится только тогда, когда модуль питания посылает нужное количество переменного тока на статор, что порождает вращающий момент.

Мотор Tesla приспособлен для работы на высокой скорости, но даже при этом требует теплового отвода. В этих целях сделаны охлаждающие пластины, воздух по которым гоняет вентилятор.

Тяговый электродвигатель очень мал, размером с арбуз, и максимально лёгок благодаря использованию алюминия. Модуль питания передаёт до 900 ампер тока на статор, обмотка которого сделана из значительно большего количества меди, чем в обычном моторе. Медные провода изолированы специальными полимерами, которые обеспечивают теплопередачу и устойчивость при вождении в экстремальных условиях.

В отличие от обычных индукционных моторов, использующих в качестве проводника алюминий, в электродвигателе Roadster эту роль играет медь. Работать с ней сложнее, но у неё меньше сопротивление, поэтому она лучше проводит ток.

Показав осенью свою горячую новинку, родстер Tesla второго поколения, и побудит автомобильную интернет общественность обсуждать произошедшее, Тесла быстро ушла в тень, оставив без ответа главный вопрос, сколько лошадиных сил развивает экстравагантный гиперкар.

Но даже тогда не был дан ответ на самый важный вопрос, о котором изначально молчала Tesla. Какая мощность Тесла Родстер II? Ответ вновь попытался дать инженер из Штатов. Вот что получилось.

Для подсчетов были использованы данные о производительности, предоставленные в свободный доступ самой автокомпании из Пало-Альто, наряду с некоторыми предположительными оценками массы, динамики и других данных которые можно поставить в формулу для подсчёта выходной мощности двигателя. В результате, предполагаемая мощность электрического родстера не разочаровывает, она вполне может соответствовать вилке от 990 до 1.400 «электропони». То есть можно точно сказать, 1 тысяча лошадей в новинке есть.

Илон Маск буквально шокировал автомобильный мир во время презентации двух новинок: Tesla Roadster II и грузовика Semi . 10.000 Нм крутящего момента это нешуточный запас!

Джейсон в своем видео как обычно подробно рассуждает на тему технических нюансов автомобиля. Как оказалось, под 10.000 Нм крутящего момента Тесла, на своем официальном вебсайте, подразумевала не что иное как крутящий момент на колесах. То есть данный крутящий момент не развивается двигателями, а увеличивается передаточным числом КПП. Это дает нам зацепку для вычисления выходной мощности и косвенно говорит о том, что точно не прилетела с другой планеты. Чудес не бывает.

Если использовать схожую методику подсчета крутящего момента, окажется, что у Dodge Challenger SRT Demon более 13.500 Нм крутящего момента на колесах…

На 1.40 минуты видео Фенске доказывает, что представленные Tesla данные фактически бессмысленны, приводя в пример мотор в 1 л.с. зацепленный с несколькими шестеренками, поменьше и побольше, с количеством зубов в 100 и 1.000, соответственно. При таком соотношении выходной крутящий момент на колесах будет соответствовать 13.500 Нм! Единственно, что с такой трансмиссией автомобиль не сможет разогнаться до скорости более 1 км/ч.

На 3 минуте видео по хронометражу рассуждения продолжаются на примере самого быстрого серийного бензинового автомобиля- Dodge Demon.


972 Нм последовательно проходя через шестерни первой передачи КПП и дифференциала увеличиваются приблизительно до 14.000 Нм крутящего момента. На второй передаче показатели на колесах все еще будут составлять более 10 тыс. Нм момента и так далее. От перемены сумм слагаемых, результат не изменится.

Электрические автомобили часто рекламируются как транспортные средства, имеющие более выгодное и экономное обслуживание, в основном из-за того, что электродвигатели намного проще, чем другие моторы. Они также могут иметь значительно более длительный срок службы, чем их газовые аналоги. Рассмотрим особенности электродвигателя «Тесла».

Высокая цель

Главный исполнительный директор Tesla Илон Маск сообщил, что амбициозная цель состоит в том, чтобы обеспечить работу силовых агрегатов Теслы на миллион миль. Подразумевается также, что они практически никогда не должны будут подвергаться износу.

На пути к этой цели компанией было внедрено несколько улучшенных аккумуляторов, инверторов и электродвигателей «Тесла».Теперь производитель автомобилей представляет еще одно обновленное устройство.

Недавно Tesla сообщила, что запускает серию новых моделей двигателей улучшенной производительности S и Model X. Эти электродвигатели «Тесла» могут использоваться только на новых транспортных средствах, которые построены на сегодняшний день. В новом оборудовании установлена обновленная версия заднего двигателя Tesla.

Ассортимент продукции

В целом автопроизводителю удалось создать электродвигатели трех видов:

  • двигатель главного типа, в котором предусматривается наличие заднего привода;
  • двигатель меньших размеров, в котором установлен передний привод — его используют для двухмоторной версии модели S и Model X;
  • более крупная задняя приводная версия, имеющая рабочие характеристики двигателя.

После обновления характеристик производительности «Тесла» изменил номер своего основного двигателя с задним приводом. Впоследствии все версии, затронутые обновлением, будут оснащены электродвигателем «Тесла», в то время как все автомобили без него, модели S P100D и Model X P100D, не получили каких-либо улучшений производительности. Мощность мотора составляет 416/362/302 л. с.

Компания не хотела комментировать новый блок привода, но это должно было стать значительным обновлением, поскольку оно позволяет ускорить движение от 0 до 60 миль/час более чем на 1 секунду.

Особенности конструкции мотора

Рассмотрим характеристики электродвигателя «Тесла». Приводы Tesla построены с использованием запатентованного процесса сборки, который включает в себя:

  • электродвигатель,
  • узел преобразователя мощности,
  • коробку передач в единый многосекционный корпус.

В прошлом году стало известно, что Tesla разрабатывает новую силовую электронику с нуля вместо использования внеоболочных компонентов для привода модели 3. Архитектура инвертора позволит задействовать электродвигатель «Тесла» мощностью более 300 кВт, что приближает его к показателям производительности модели S. Но также подразумевается, что Tesla, скорее всего, обновит модель S, чтобы еще больше дифференцировать ее повышенную производительность от меньшего дорогой модели 3. Характеристики электродвигателя обеспечивают перспективность его популярности.

Особенности процесса производства «Тесла»

Первое, что можно заметить на производственном этаже Tesla Motors, — это роботы. Восемь футов высотой ярко-красных ботов, которые выглядят как трансформеры, прижимающиеся к каждому седану модели S. До восьми роботов одновременно работают над одной моделью S в четкой последовательности, каждая машина выполняет до пяти задач:

  • сварку,
  • заклепывание,
  • захват и перемещение материалов,
  • изгиб металла,
  • установку компонентов.

Мнение директора компании

«Модель X является особенно сложной машиной для сборки. Может быть, самый сложный автомобиль для строительства в мире. Я не уверен, что будет сложнее », — признался Илон Маск, основатель компании-миллиардера «Теслы» и ее генеральный директор, который также выполняет те же роли в SpaceX.

Маск хочет сосредоточиться на создании лучшего в мире автомобиля, а модель S стоимостью в $ 70 000 по всем правам может претендовать на этот приз. Это полностью электрический автомобиль, он предлагает недельную поездку за одну зарядку от любой из общенациональной сети бесплатных зарядных станций на солнечной энергии.

Это самый быстрый из всех четырехдверных серийных автомобилей на планете, являясь самым безопасным автомобилем своего класса. Когда он сталкивается с машиной для испытания на столкновение, последняя, подобранная для испытания, ломается.

Асинхронный двигатель

Асинхронный электродвигатель «Теслы» — это трехфазный четырехполюсный мотор. Он состоит из двух основных частей — статора и ротора.

Статор состоит из трех частей — сердечника статора, проводника и рамы. Ядро статора представляет собой группу стальных колец, которые изолированы друг от друга и ламинируются вместе. Эти кольца имеют прорези внутри колец, которые проводящий провод будет обертывать, образуя катушки статора.

Проще говоря, в трехфазном асинхронном двигателе существует три разных типа проводников. Их можно назвать фазой 1, фазой 2 и фазой 3. Каждый тип провода обернут вокруг слотов на противоположных сторонах внутренней части сердечника статора. Как только проводящий провод находится внутри сердечника статора, сердечник размещается внутри рамки.

Как работает электродвигатель?

Принцип работы электродвигателя «Тесла» такой.Он начинается с аккумулятора в автомобиле, который подключен к двигателю. Электрическая энергия подается на статор через аккумулятор. Катушки внутри статора (изготовленные из проводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты. Поэтому когда электрическая энергия от автомобильной батареи подается на двигатель, катушки создают вращающиеся магнитные поля, которые тянут проводящие стержни снаружи ротора вдоль него. Вращающийся ротор — это то, что создает механическую энергию, необходимую для поворота шестеренок автомобиля, которые, в свою очередь, вращают шины.

В электромобиле нет генератора переменного тока. Как же заряжается аккумулятор? Когда нет отдельного генератора переменного тока, двигатель в электромобиле действует и как двигатель, и как и генератор. Это одна из причин, почему электромобили настолько уникальны. Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда нога находится на ускорителе — ротор тянется вдоль вращающегося магнитного поля, требуя большего крутящего момента. Но что происходит, когда отпускают ускоритель?

Когда нога сходит с акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от того, чтобы его тянуть вдоль магнитного поля). Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает батарею, действуя как генератор переменного тока.

Что означает три фазы?

Основываясь на основных принципах Никола Теслы, определенных в его многофазном асинхронном двигателе, выпущенном в 1883 году, «три фазы» относятся к токам электрической энергии, которые подаются на статор через аккумулятор автомобиля. Эта энергия приводит к тому, что проводящие проволочные катушки начинают вести себя как электромагниты. Таким образом обеспечивается работа электрического двигателя.

Поскольку эта технология продолжает развиваться, производительность электрических автомобилей начинает быстро догонять и даже превосходить их газовые аналоги. Несмотря на то что электромобили остаются на некотором расстоянии, скачки, которые делали такие компании, как Tesla и Toyota, вдохновили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.

Электрические автомобили и окружающая среда

С точки зрения крупномасштабных перспектив, есть несколько преимуществ для роста электромобилей:

Подведем итоги

Электродвигатель стал особенно высоко цениться в течение последних нескольких лет. Поскольку большинство людей понимают и оценивают влияние загрязнения окружающей среды на климат, спрос на это транспортное средство, которое может принести меньше вреда природе, постоянно возрастает.

Благодаря этому требованию роста и развития некоторые из величайших изобретателей мира усовершенствовали электродвигатель, чтобы он работал лучше и был более эффективным. Илон Маск — один из них. Он приближает время, когда электромобили станут использоваться повсеместно. Тогда и экология планеты будет более чистой.

Как работает электродвигатель в автомобиле

Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей: статора и ротора. Статор состоит из трех частей: сердечника статора, токопроводящей проволоки и рамы. Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга, а затем соединены друг с другом.
Внутри этих колец есть прорези, через которые проводящий провод будет наматывать обмотки статора. Проще говоря, в трехфазном асинхронном двигателе есть три разных типа проводов.Эти типы проводов можно назвать Фазой 1, Фазой 2 и Фазой 3.
Провода каждого типа наматываются вокруг пазов на противоположных сторонах внутренней части сердечника статора. Как только токопроводящий провод находится внутри сердечника статора, сердечник помещается в раму.

Как работает электродвигатель?

Из-за сложности темы ниже приводится упрощенное объяснение того, как четырехполюсный трехфазный асинхронный двигатель переменного тока работает в автомобиле. Все начинается с аккумуляторной батареи в автомобиле, которая подключена к двигателю. Электрическая энергия подается на статор через аккумуляторную батарею автомобиля. Катушки внутри статора (сделанные из токопроводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты. Следовательно, когда электрическая энергия от автомобильного аккумулятора подается в двигатель, катушки создают вращающиеся магнитные поля, которые тянут за собой проводящие стержни на внешней стороне ротора. Вращающийся ротор — это то, что создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.В обычном автомобиле, то есть неэлектрическом, есть и двигатель, и генератор переменного тока. Аккумулятор питает двигатель, который приводит в действие шестерни и колеса. Вращение колес — это то, что затем приводит в действие генератор в автомобиле, а генератор перезаряжает аккумулятор. Вот почему вам советуют водить машину в течение некоторого времени после прыжка: аккумулятор необходимо подзарядить, чтобы он функционировал должным образом. В электромобиле нет генератора.
Так как же тогда аккумулятор заряжается? Хотя нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и как генератор переменного тока.

Рис. 1. Термин «переменный ток» определяет тип электричества, характеризующийся напряжением и током, которые меняются во времени.

Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Это одна из причин, почему электромобили так уникальны.
Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на акселераторе — ротор движется вращающимся магнитным полем, требуя большего крутящего момента.Но что происходит, когда вы отпускаете акселератор? Когда ваша нога отрывается от акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от магнитного поля). Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает аккумулятор, действуя как генератор переменного тока.

Переменный ток и постоянный

Концептуальные различия этих двух типов токов должны быть очевидны; в то время как один ток (постоянный) постоянен, другой (переменный) более прерывистый.Однако все немного сложнее, чем это простое объяснение, поэтому давайте разберем эти два термина более подробно.

Постоянный ток (DC)

Под постоянным током понимается постоянный однонаправленный электрический ток. Кроме того, напряжение сохраняет полярность во времени. На батареях, собственно, четко обозначен положительный и отрицательный полюсы. Они используют постоянную разность потенциалов для генерации тока всегда в одном и том же направлении.В дополнение к батареям, топливным элементам и солнечным батареям, скольжение между определенными материалами может производить постоянный ток.

Переменный ток (AC)

Термин «переменный ток» определяет тип электричества, характеризующийся напряжением (представьте давление воды в шланге) и током (представьте скорость потока воды через шланг), которые изменяются во времени (рис. 1). При изменении напряжения и тока сигнала переменного тока они чаще всего следуют по форме синусоидальной волны.Поскольку форма волны является синусоидальной, напряжение и ток чередуются с положительной и отрицательной полярностью при просмотре во времени. Форма синусоидальной волны сигналов переменного тока обусловлена ​​способом генерации электричества.
Еще один термин, который вы можете услышать при обсуждении электроэнергии переменного тока, — это частота. Частота сигнала — это количество полных волновых циклов, завершенных за одну секунду времени. Частота измеряется в герцах (Гц), а в США стандартная частота в электросети составляет 60 Гц.Это означает, что сигнал переменного тока колеблется с частотой 60 полных обратных циклов каждую секунду.

Почему это важно?

Электроэнергия переменного тока — лучший способ передачи полезной энергии от источника генерации (например, плотины или ветряной мельницы) на большие расстояния.

Рис. 2. Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого, чтобы намеренно выйти из строя.

Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений.Вот почему в розетках вашего дома будет указано 120 вольт переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, который подает питание на окрестности (те цилиндрические серые коробки, которые вы видите на полюсах линии электропередачи), может иметь напряжение до 66 кВА (66000 вольт переменного тока). Мощность переменного тока
позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является наиболее популярным током энергии для приложений питания.

Как работает трехфазный четырехполюсный асинхронный двигатель?

Самые большие промышленные двигатели — это асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Однако что именно означает «асинхронный» двигатель?
С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора.
С точки зрения непрофессионала, это означает, что двигатель запускается, потому что электричество индуцируется в роторе магнитными токами, а не прямым подключением к электричеству, как у других двигателей, таких как коллекторный двигатель постоянного тока.
Что означает многофазность? Всякий раз, когда у вас есть статор, который содержит несколько уникальных обмоток на полюс двигателя, вы имеете дело с многофазностью (рис. 2).
Обычно предполагается, что многофазный двигатель состоит из трех фаз, но есть двигатели, которые используют две фазы. Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого, чтобы намеренно выйти из строя.

Рис. 3. Три фазы — это токи электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля.

Что означает трехфазный ? Основываясь на основных принципах Николы Теслы, определенных в его многофазном асинхронном двигателе, выдвинутом в 1883 году, «трехфазный» относится к токам электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля (рис. 3).
Эта энергия заставляет катушки проводящих проводов вести себя как электромагниты. Простой способ понять три фазы — рассмотреть три цилиндра в форме буквы Y, использующие энергию, направленную к центральной точке, для выработки энергии.По мере создания энергии ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюсы внутри катушек, позволяя им действовать как противоположные стороны магнита.

Лучшие электромобили

По мере того, как эта технология продолжает развиваться, характеристики электромобилей начинают быстро догонять и даже превосходить их газовые аналоги. Несмотря на то, что электромобилям еще предстоит пройти определенное расстояние, шаги, предпринятые такими компаниями, как Tesla и Toyota, вселили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.На данный момент мы все знаем об успехе, который Tesla испытывает в этой области, выпустив седан Tesla Model S, способный проехать до 288 миль, разогнаться до 155 миль в час и иметь крутящий момент 687 фунт-фут.
Тем не менее, есть десятки других компаний, которые достигают значительного прогресса в этой области, например, Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy’s Spark и Mercedes B-Class Electric. (рис.4).

Электромобили и окружающая среда

Электродвигатели влияют на окружающую среду как напрямую, так и косвенно, на микро- и макроуровне.Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вам нужно. С индивидуальной точки зрения, электромобили не требуют бензина для работы, что приводит к тому, что автомобили без выбросов заполняют наши шоссе и города. Хотя это представляет собой новую проблему с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густо населенных в городах и пригородах, выбрасывающих токсины в воздух (рис. 5).
Примечание. Значения MPG (миль на галлон), указанные для каждого региона, представляют собой комбинированный рейтинг экономии топлива для города / шоссе бензинового автомобиля, который будет иметь глобальное потепление, эквивалентное вождению электромобиля.Рейтинги выбросов глобального потепления в регионах основаны на данных электростанций за 2012 год в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электрического топлива. Среднее значение в 58 миль на галлон в США — это средневзвешенное значение продаж, основанное на том, где были проданы электромобили в 2014 году. С большой точки зрения рост количества электромобилей дает несколько преимуществ.

Рис. 5. Значения количества миль на галлон для каждого региона страны представляют собой комбинированный рейтинг экономии топлива в городе / на шоссе для бензинового автомобиля, который при глобальном потеплении будет эквивалентен управлению электромобилем.

Во-первых, снижается уровень шумового загрязнения, так как шум, исходящий от электродвигателя, намного ниже, чем от газового двигателя. Кроме того, поскольку электрические двигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовые двигатели, количество химикатов и масел, используемых в автомагазинах, будет сокращено из-за меньшего количества автомобилей, нуждающихся в техосмотрах.

Заключение

Электродвигатель меняет ход истории точно так же, как паровой двигатель и печатный станок изменили определение прогресса.Хотя электрический двигатель не открывает новые возможности в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной отрасли, ориентированный не только на стиль и характеристики, но и на внешнее воздействие . Таким образом, хотя электрический двигатель, возможно, и не реформирует мир из-за внедрения какого-то нового изобретения или создания нового рынка, он меняет определение того, как мы, как общество, определяем прогресс. Если больше ничего не должно произойти из-за достижений в области электродвигателя, то, по крайней мере, мы можем сказать, что наше общество продвинулось вперед с осознанием своего воздействия на окружающую среду.Это новое определение прогресса, определяемое электрическим двигателем.
(Джилл Скотт)

Как работает электродвигатель?

Все признают, что если вы можете создать очень эффективные электродвигатели, вы можете сделать качественный скачок вперед. — Джеймс Дайсон

Введение

«Электродвигатель стал немного более известным и ценимым за последние несколько лет благодаря тому, что он все больше интегрируется в наши автомобили.Большинство людей понимает и ценит влияние загрязнения на климат, поэтому производители автомобилей все больше нуждаются в автомобилях, которые могут помочь улучшить нашу окружающую среду или, по крайней мере, причинить меньше вреда ».

«Именно благодаря этой потребности в росте и развитии некоторые из величайших изобретателей мира усовершенствовали электродвигатель, чтобы теперь он работал лучше и эффективнее, чем когда-либо прежде».

Детали электродвигателя

Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей — статора и ротора.Используйте интерактивное изображение ниже в этом разделе, чтобы узнать больше о статоре и роторе и узнать о роли, которую каждый играет в электродвигателе.



Статора Ротор

Статор

Статор состоит из трех частей — сердечника статора, токопроводящей жилы и каркаса. Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга и соединены друг с другом.У этих колец есть прорези на внутренней стороне колец, вокруг которых будет наматываться проводящий провод, образуя катушки статора.

Проще говоря, в трехфазном асинхронном двигателе есть три разных типа проводов. Вы можете назвать эти типы проводов Фазой 1, Фазой 2 и Фазой 3. Каждый тип проводов наматывается вокруг пазов на противоположных сторонах внутренней части сердечника статора.

Когда токопроводящий провод находится внутри сердечника статора, сердечник помещается в раму.

Ротор

Ротор также состоит из трех частей — сердечника ротора, токопроводящих стержней и двух концевых колец.Пластины из высококачественной легированной стали составляют цилиндрический сердечник ротора, в центре которого проходит стержень. На внешней стороне сердечника ротора есть прорези, которые либо проходят параллельно стержнеобразному стержню в центре сердечника ротора, либо слегка закручены, образуя диагональные прорези. Если сердечник статора имеет диагональные пазы на внешней стороне сердечника, он называется ротором с короткозамкнутым ротором.

Трехфазный четырехполюсный асинхронный двигатель использует ротор с короткозамкнутым ротором. По диагональным линиям в сердечнике размещены токопроводящие стержни, образующие обмотку ротора.Затем с обеих сторон сердечника помещают концевые кольца, чтобы закоротить все токопроводящие стержни, которые были размещены на диагональных линиях сердечника ротора.

После сборки ротора и статора ротор вставляется в статор, и с обеих сторон размещаются два концевых выступа. Эти концевые раструбы изготовлены из того же материала, что и рама статора, и используются для защиты двигателя с обеих сторон.


Как работает электродвигатель?

(непрофессионал)

Если вы инженер-электрик, вы знаете, как работает электродвигатель.Если вы этого не сделаете, это может сильно сбить с толку, поэтому вот упрощенное объяснение (или версия «как работает электродвигатель для чайников») того, как четырехполюсный трехфазный асинхронный двигатель работает в автомобиле.

Начинается с аккумуляторной батареи в автомобиле, которая подключена к двигателю. Электроэнергия подается на статор через аккумулятор автомобиля. Катушки внутри статора (сделанные из токопроводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты.Следовательно, когда электрическая энергия от автомобильного аккумулятора подается в двигатель, катушки создают вращающиеся магнитные поля, которые тянут за собой проводящие стержни на внешней стороне ротора. Вращающийся ротор — это то, что создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.

Так вот, в типичном автомобиле, который не является электрическим, есть и двигатель, и генератор переменного тока. Аккумулятор питает двигатель, который приводит в действие шестерни и колеса.Вращение колес — это то, что затем приводит в действие генератор в автомобиле, а генератор перезаряжает аккумулятор. Вот почему вам советуют водить машину в течение некоторого времени после прыжка — аккумулятор необходимо подзарядить, чтобы он функционировал должным образом.

В электромобиле нет генератора. Итак, как же тогда перезаряжается аккумулятор? Хотя нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и как генератор переменного тока. Это одна из причин того, почему электромобили так уникальны.Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на акселераторе — ротор притягивается вращающимся магнитным полем, требуя большего крутящего момента. Но что происходит, когда вы отпускаете акселератор?

Когда ваша нога отрывается от акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от того, что его тянет за собой магнитное поле).Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает аккумулятор, действуя как генератор переменного тока.

Чтобы еще больше упростить этот процесс, представьте, что крутите педали на велосипеде в гору. Чтобы добраться до вершины холма, вам нужно крутить педали сильнее и, возможно, даже придется встать и затратить больше энергии, чтобы повернуть шины и достичь вершины холма. Это похоже на нажатие на газ. Вращающееся магнитное поле, тянущее за собой ротор, создает сопротивление (или крутящий момент), необходимое для перемещения шин и автомобиля.Оказавшись на вершине холма, вы можете расслабиться и перезарядиться, в то время как колеса будут двигаться еще быстрее, чтобы спуститься с холма. В машине это происходит, когда вы отпускаете газ, а ротор движется быстрее и подает электроэнергию обратно в линию электропередачи для подзарядки аккумулятора.


Что такое переменный ток (AC)


по сравнению с постоянным током (DC)?

Концептуальные различия этих двух типов токов кажутся довольно очевидными.Пока один ток постоянный, другой более прерывистый. Однако все немного сложнее, чем это простое объяснение, поэтому давайте разберем эти два термина более подробно.

Постоянный ток (DC)

Термин «постоянный ток» относится к электричеству, которое постоянно движется в единственном и последовательном направлении. Кроме того, напряжение постоянного тока сохраняет правильную полярность, то есть неизменную.

Подумайте о том, как батареи имеют четко определенные положительные и отрицательные стороны.Они используют постоянный ток для постоянной подачи одинакового напряжения. Помимо батарей, топливные элементы и солнечные элементы также производят постоянный ток, в то время как простые действия, такие как трение определенных материалов друг о друга, также могут создавать постоянный ток.

В соответствии с нашей концепцией батареи, рассматривая положительную и отрицательную стороны батареи, важно отметить, что постоянный ток всегда течет в одном направлении между положительной и отрицательной стороной. Это гарантирует, что обе стороны батареи всегда будут положительными и отрицательными.



Переменный ток (AC)

Термин «переменный ток» определяет тип электричества, характеризующийся напряжением (представьте давление воды в шланге) и током (представьте скорость потока воды через шланг), которые меняются во времени. При изменении напряжения и тока сигнала переменного тока они чаще всего следуют шаблону синусоидальной волны (на изображении выше синусоида показана на правом графике напряжения). Поскольку форма волны является синусоидальной, напряжение и ток чередуются с положительной и отрицательной полярностью при просмотре во времени.Форма синусоидальной волны сигналов переменного тока обусловлена ​​способом генерации электричества.

Еще один термин, который вы можете услышать при обсуждении электроэнергии переменного тока, — это частота. Частота сигнала — это количество полных волновых циклов, завершенных за одну секунду времени. Частота измеряется в герцах (Гц), а в США стандартная частота в электросети составляет 60 Гц. Это означает, что сигнал переменного тока колеблется с частотой 60 полных обратных циклов каждую секунду.

Так почему это важно?

Электроэнергия переменного тока — лучший способ передачи полезной энергии от источника генерации (т.э., плотина или ветряк) на большие расстояния. Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Вот почему в розетках вашего дома будет указано 120 вольт переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, подающего питание в район (те цилиндрические серые прямоугольники, которые вы видите на полюсах линии электропередачи), может иметь высокое напряжение до 66 кВА (66000 вольт переменного тока).

Мощность переменного тока

позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является наиболее популярным током для источников питания.


Как работает трехфазный четырехполюсный асинхронный двигатель?

Самые большие промышленные двигатели — это асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Но что именно означает «асинхронный» двигатель? С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора. С точки зрения непрофессионала, это означает, что двигатель запускается, потому что электричество индуцируется в роторе магнитными токами, а не прямым подключением к электричеству, как у других двигателей, таких как коллекторный двигатель постоянного тока.

Что означает многофазность?

Всякий раз, когда у вас есть статор, который содержит несколько уникальных обмоток на полюс двигателя, вы имеете дело с многофазностью. Обычно многофазный двигатель состоит из трех фаз, но есть двигатели, которые используют две фазы.

Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого, чтобы намеренно выйти из строя.

Что означает три фазы?

Основываясь на основных принципах Николы Теслы, определенных в его многофазном асинхронном двигателе, выдвинутом в 1883 году, «трехфазный» относится к токам электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля.Эта энергия приводит к тому, что катушки с проводящим проводом начинают вести себя как электромагниты.

Простой способ понять три фазы — рассмотреть три цилиндра в форме буквы Y, использующие энергию, направленную к центральной точке, для выработки энергии. По мере создания энергии ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюсы внутри катушек, позволяя им действовать как противоположные стороны магнита.


Лучшие электромобили

По мере того, как эта технология продолжает развиваться, характеристики электромобилей начинают быстро догонять и даже превосходить их газовые аналоги.Несмотря на то, что электромобилям еще предстоит пройти определенное расстояние, шаги, предпринятые такими компаниями, как Tesla и Toyota, вселили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.

На данный момент мы все знаем, какой успех Tesla испытывает в этой области, выпустив седан Tesla Model S, способный проехать до 288 миль, разогнаться до 155 миль в час и иметь крутящий момент 687 фунт-фут. Однако есть десятки других компаний, которые добиваются значительного прогресса в этой области, например Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy’s Spark и Mercedes B-Class Electric.


Электромобили и окружающая среда

Реальность такова, что цены на газ должны быть намного дороже, чем они есть, потому что мы не учитываем истинный ущерб окружающей среде и скрытые затраты на добычу нефти и ее транспортировку в США — Илон Маск

Электродвигатели прямо или косвенно воздействуют на окружающую среду на микро- и макроуровне. Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вам нужно.С индивидуальной точки зрения, электромобили не требуют бензина для работы, поэтому автомобили без выбросов заселяют наши дороги и города. Хотя это представляет собой новую проблему с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густо населенных в городах и пригородах, выбрасывающих токсины в воздух.


Примечание: MPG (значения миль на галлон, указанные для каждого региона, представляют собой комбинированный рейтинг экономии топлива в городе / шоссе для бензинового автомобиля, который будет иметь глобальное потепление, эквивалентное вождению электромобиля.Рейтинги выбросов глобального потепления в регионах основаны на данных электростанций 2012 года в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электрического топлива. Среднее значение в 58 миль на галлон в США — это средневзвешенное значение продаж, основанное на том, где были проданы электромобили в 2014 году.

С большой точки зрения рост электромобилей дает несколько преимуществ. Во-первых, снижается шумовое загрязнение, поскольку шум, излучаемый электродвигателем, гораздо более приглушен, чем шум двигателя, работающего на газе.Кроме того, поскольку электрические двигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовые двигатели, количество химикатов и масел, используемых в автомагазинах, будет сокращено из-за того, что меньше автомобилей нуждаются в техосмотрах.


Заключение

Электродвигатель меняет ход истории точно так же, как паровой двигатель и печатный станок изменили определение прогресса. Хотя электрический двигатель не открывает новые возможности в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной индустрии, ориентированный не только на стиль и производительность, но и на внешнее воздействие.Таким образом, хотя электрический двигатель, возможно, и не реформирует мир из-за внедрения какого-то нового изобретения или создания нового рынка, он меняет определение того, как мы, как общество, определяем прогресс.

Если больше ничего не должно произойти из достижений в области электродвигателей, то по крайней мере мы можем сказать, что наше общество продвинулось вперед с осознанием своего воздействия на окружающую среду. Это новое определение прогресса, определяемое электрическим двигателем.


Источники:

http: // www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Строительство трехфазного асинхронного двигателя https://www.youtube.com/watch?v=Mle-ZvYi8HA
Как работает асинхронный двигатель работает? https://www.youtube.com/watch?v=LtJoJBUSe28
http://www.mpoweruk.com/motorsbrushless.htm
http://www.kerryr.net/pioneers/tesla.htm
https: // www.basilnetworks.com/article/motors/brushlessmotors.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
https: // www.youtube.com/watch?v=HWrNzUCjbkk
Рабочий принцип трехфазного индукционного двигателя https://www.youtube.com/watch?v=DsVbaKZZOFQ
https://www.youtube.com/watch?v=NaV7V07tEMQ
https : //www.teslamotors.com/models
http://evobsession.com/electric-car-range-comparison/
http://www.edmunds.com/mitsubishi/i-miev/2016/review/
http : //www.ford.com/cars/focus/trim/electric/
https://en.wikipedia.org/wiki/BMW_i3
http://www.edmunds.com/ford/fusion-energi/2016/ обзор /
http: // www.chevrolet.com/spark-ev-electric-vehicle.html
http://www.topspeed.com/cars/volkswagen/2016-volkswagen-e-golf-limited-edition-ar168067.html
http: // www. topspeed.com/cars/bmw/2016-bmw-i3-m-ar160295.html
http://www.popularmechanics.com/cars/hybrid-electric/reviews/a9756/2015-mercedes-benz-b-class- electric-drive-test-ride-16198208/
http://www.topspeed.com/cars/nissan/2016-nissan-leaf-ar171170.html
http://www.caranddriver.com/fiat/500e
http : //www.topspeed.com/cars/kia/2015-kia-soul-electricdriven-ar170088.html
http://www.topspeed.com/cars/ford/2016-ford-focus-electric-ar171335.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s- 70d-ar168705.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s-p85d-ar165627.html
http://www.topspeed.com/cars/tesla/2015- tesla-model-s-ar165742.html # main
http://www.caranddriver.com/reviews/2015-tesla-model-s-p90d-test-review
http://www.caranddriver.com/tesla/ model-s
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-1/what-is-alternating-current-ac/
http: // science.howstuffworks.com/electricity8.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Изображение с: http://faq.zoltenergy.co/ технический /
http://www.kerryr.net/pioneers/tesla.htm
https://en.wikipedia.org/wiki/Westinghouse_Electric_(1886)
http://www.allaboutcircuits.com/textbook/alternating- current / chpt-13 / Introduction-ac-motors /
https://www.youtube.com/watch?v=Q2mShGuG4RY
http://www.explainthatstuff.com/electricmotors.html
http://electronics.howstuffworks.com/motor.htm
https://en.wikipedia.org/wiki/Induction_motor


Инженерное дело 101: объяснение технологии электромобилей Tesla [Видео]

опубликовано 6 июня 2017 г. к Чарльз Моррис

Мы, Теслафилы, знакомы с классными атрибутами электромобилей — мгновенным крутящим моментом, большей эффективностью, рекуперативным торможением — но многие ли из нас действительно понимают, как все это работает? Любой, кто хочет немного глубже понять принцип работы электрического силового агрегата, не посещая инженерное училище, должен будет посмотреть «Как работает электромобиль?»

Вверху: что на самом деле внутри Tesla Model S (Источник: Tesla)

Этот десятиминутный учебник по трансмиссии, входящий в серию видеороликов Patreon’s Learn Engineering, очень доступен, но на удивление информативен.Он использует язык, достаточно простой для понимания, но в нем подробно рассказывается о работе электрической трансмиссии и о том, чем она отличается от своего аналога с двигателем внутреннего сгорания. Если вы изо всех сил пытаетесь объяснить преимущества использования электромобиля своим друзьям-автолюбителям, это будет удобный видеоролик, которым можно поделиться с ними.

Вверху: краткое информативное видео-руководство о том, как проектируется полностью электрическая Tesla Model S (Youtube: Learn Engineering)

Используя четкую и эффективную анимацию, презентация разбирает Tesla Model S, чтобы продемонстрировать работу асинхронного двигателя (изобретенного Никой Тесла, он вдохновил название компании), инвертора, трансмиссии, дифференциала, аккумуляторной батареи и системы рекуперативного торможения.Обсуждаемые общие концепции применимы к любому электромобилю (EV), хотя есть некоторые отличия (например, в большинстве других электромобилей используются более крупные прямоугольные аккумуляторные элементы вместо цилиндрических).

Вверху: Tesla использует более 7000 цилиндрических аккумуляторных элементов 18650 Panasonic внутри днища Tesla Model S (Instagram: @ yancki87)

Существует подробное объяснение различий между электродвигателем и двигателем внутреннего сгорания (ДВС).Последнее намного сложнее — для него требуется коленчатый вал с противовесами для преобразования линейного движения поршней во вращательное движение, маховик для плавной выходной мощности, двигатель постоянного тока для запуска, генератор переменного тока для зарядки аккумулятора, система охлаждения и множество других устройств, в которых электродвигатель не нуждается. Асинхронный двигатель, который производит прямое вращательное движение и равномерную выходную мощность, намного меньше и легче. Асинхронный двигатель Тесла выдает мощность 270 кВт и весит 31 год.8 кг, тогда как ДВС мощностью 140 кВт будет весить около 180 кг.

Вверху: Tesla Model S (Изображение: Tesla)

И, конечно же, ДВС обеспечивает полезный крутящий момент и мощность только в ограниченном диапазоне (обычно 2 000–4 000 об / мин), поэтому для соединения его с ведущими колесами требуется сложная трансмиссия. Асинхронный двигатель почти одинаково эффективен от нуля до 18000 об / мин. Как и в большинстве электромобилей, в Model S используется простая односкоростная трансмиссия.Плавная кривая мощности асинхронного двигателя без перерывов в переключении передач — вот что придает электромобилям восхитительные характеристики.

Вверху: Схема Tesla Model S (Изображение: Cliff’s Riffs через Wired)

У электромобилей

есть несколько компонентов, которых нет в ДВС. Инвертор необходим для преобразования постоянного тока от аккумуляторной батареи в трехфазный переменный ток, используемый двигателем. Инвертор также контролирует скорость двигателя. В оригинальном аккумуляторном блоке Tesla используется около 7000 маленьких цилиндрических аккумуляторных элементов Panasonic.Это позволяет металлическим трубкам, заполненным охлаждающей жидкостью на основе гликоля, проходить через зазоры между элементами, сохраняя батарею в прохладном состоянии и продлевая ее срок службы. Аккумуляторы обязательно бывают большими и тяжелыми. Tesla превратила это в преимущество, сделав пакет плоским и установив его в нижней части шасси. Это дает автомобилю низкий центр тяжести, что значительно улучшает управляемость и позволяет избежать необходимости занимать пассажирское и грузовое пространство (больное место с «неродными» электромобилями, которые были адаптированы из конструкций автомобилей с ДВС).

Опубликовано в Электрические транспортные средства, литий-ионные аккумуляторы, Тесла, новости тесла TSLA


Далее →

← Предыдущее

Характеристики мощности и крутящего момента

Tesla All Wheel Drive (Dual Motor)

Запланировать тест-драйв Оцените мощность двух двигателей сегодня

Попытка напрямую связать мощность в лошадиных силах автомобилей, работающих на бензине, с мощностью в лошадиных силах электромобиля — сложная задача.Физика силовой установки электромобиля сильно отличается от бензиновой. В электромобиле электрохимические реакции в литий-ионных элементах создают электричество. Это электричество проходит через силовую электронику, которая контролирует напряжение и ток, а затем течет к электромагнитам в двигателе, которые создают мощные магнитные поля, вращающие вал и вращающие колеса. Мощность, необходимая для вращения этого вала, в наибольшей степени соответствует традиционным измерениям мощности в лошадиных силах. Однако на самом деле цепочка начинается с электрохимических реакций, которые происходят в аккумуляторной батарее.В зависимости от температуры, уровня заряда и возраста аккумулятора количество извлекаемой электроэнергии может сильно различаться.

Существует некоторая путаница в отношении нашей методологии определения «эквивалентных» значений мощности в лошадиных силах для наших полноприводных двухмоторных транспортных средств — версии «D» модели S. Мы надеемся, что этот документ ответит на эти вопросы.

Электрическая мощность в лошадиных силах

Определение электрической мощности в лошадиных силах не очень интуитивно понятно. Киловатты или мегаватты — гораздо более полезная единица измерения.Одно только электричество не может генерировать физическое движение, как лошадь или двигатель, работающий на топливе. Электродвигатель преобразует электричество в движение. Думайте об электроэнергии, как о потоке топлива из бака в двигатель. Различные ситуации (низкий уровень заряда, низкие температуры и т. Д.) Могут уменьшить этот поток электронов ниже предельной мощности электродвигателя. В других случаях потенциальный поток электричества может превышать возможности электродвигателя (нагретая батарея, кратковременные ускорения и т. Д.). Поскольку номинальная электрическая мощность аккумулятора варьируется, это не точное число, которое можно использовать для определения физических возможностей электромобиля. Мощность на валу двигателя, когда он работает отдельно, является более стабильным показателем. Фактически, только эта (одиночная или комбинированная) мощность вала двигателя в лошадиных силах должна быть указана в Европейском Союзе по закону.

Двойной двигатель по сравнению с одним двигателем (P85 против P85D)

Номинальная мощность на валу заднеприводного одиночного двигателя модели S очевидна и составляет примерно 360-470 л.с. в зависимости от варианта (60, 85 или P85) .Кроме того, он в целом аналогичен, но не такой, как выходная электрическая мощность аккумулятора. Разница наиболее очевидна для водителей, когда батарея находится на очень низком уровне SoC. В этом состоянии химические реакции генерируют меньшее напряжение и меньшую эквивалентную мощность, хотя физический электродвигатель не изменился. Максимальный крутящий момент, на который способны электродвигатели, практически не изменяется при изменении мощности батареи, даже если максимальная мощность на валу уменьшается по мере уменьшения мощности батареи.

Когда мы выпустили полноприводный P85D, мы применили простой и последовательный подход, указав совместную мощность двух электродвигателей, переднего и заднего. Крутящий момент от двух двигателей объединяется, что приводит к огромному увеличению ускорения, которое вы чувствуете в P85D. Вот почему безумный режим так восхитителен. Автомобиль разгоняется чуть быстрее, чем 1g, обеспечивая потрясающую скорость разгона до 100 км / ч (96,6 км / ч) за 3,1 секунды. Это ускорение было подтверждено Motor Trend с использованием базового автомобиля и водителя среднего веса.Следует отметить, что более крупный пассажирский салон и дополнительные опции, увеличивающие вес, уменьшат ускорение. Кроме того, стандарт Motor Trend исключает первые 28 см выката. Включение этого развертывания добавляет примерно 0,2 секунды к ускорению.

Еще одно замечание: в то время как бензиновые автомобили становятся хуже с высотой, электромобили становятся быстрее. Все автомобили испытывают пониженное сопротивление воздуха, но автомобили с бензиновым двигателем становятся все более лишенными кислорода, чем выше они едут. Тест Motor Trend был проведен примерно на уровне моря, поэтому Model S будет превосходить автомобиль внутреннего сгорания с таким же номинальным ускорением при увеличении высоты.

С мощностью на валу, исходящей от двигателей, ситуация не всегда так проста, как перед + зад. По мере того, как мы повышали мощность комбинированного двигателя все выше и выше, количество раз, когда химическая мощность аккумулятора ниже, чем мощность комбинированного двигателя, увеличивается.

Кроме того, система полного привода в двухмоторных автомобилях распределяет доступную электрическую мощность для максимального увеличения крутящего момента (и мощности) в соответствии с условиями сцепления с дорогой и переносом веса в транспортном средстве.Например, при резком ускорении вес переносится на заднюю часть автомобиля. Передний двигатель должен уменьшать крутящий момент и мощность, чтобы предотвратить пробуксовку передних колес. Эта мощность подается на задний двигатель, где ее можно сразу использовать. Обратное происходит при торможении, когда передний двигатель может воспринимать больший тормозной момент и мощность рекуперативного торможения.

Полный привод 85D и 70D

Некоторая путаница возникает из-за того, что в автомобилях 85D и 70D объединенная мощность на валу двигателя очень похожа на электрическую мощность аккумулятора во многих нормальных условиях.Суммарная мощность на валу двигателя P85D часто может превышать доступную электрическую мощность аккумулятора. Двойные двигатели используют мощность аккумулятора в самых разнообразных реальных условиях. Истинными критериями для любого водителя электромобиля являются время разгона и ходовые качества автомобиля.

JB Straubel

Технология двигателя модели 3 помогает Tesla увеличить диапазон Model S на 10%

Модель S

Tesla известна своим большим запасом хода: версия мощностью 100 кВт / ч рассчитана на проезд 335 миль (540 км) без подзарядки.Во вторник Tesla объявила об изменениях в трансмиссии Model S, которые увеличили запас хода более чем на 10 процентов до 370 миль (595 км).

Подобные улучшения увеличили дальность действия High-End Model X до 325 миль (525 км). И все это без увеличения емкости аккумулятора автомобиля. Автомобили просто могут ехать на 10 процентов дальше на каждый киловатт-час заряда, что означает экономию электроэнергии для клиентов Tesla.

Сочетание нескольких факторов привело к впечатляющему повышению эффективности.Tesla переключила один из двигателей в Model S и Model X на новую технологию, впервые использованную в Model 3. Компания также объявила об улучшенной системе подвески и других улучшениях эффективности всего автомобиля. Впечатляющий результат: более 93% энергоэффективности.

Синхронные реактивные двигатели с постоянными магнитами, объяснение

До сих пор в моделях S и X использовались обычные асинхронные двигатели. В асинхронном двигателе переменный ток пропускается через обмотки статора (неподвижная часть двигателя) для создания вращающегося магнитного поля.Это магнитное поле индуцирует электрические токи в обмотках ротора (вращающаяся часть двигателя), которые создают противоположное магнитное поле, заставляя ротор вращаться в том же направлении, что и магнитное поле.

Модель 3 дебютировала с альтернативной технологией двигателя, которую Тесла называет синхронным реактивным двигателем с постоянным магнитом. Синхронный реактивный двигатель имеет ряд электромагнитов вокруг статора, но ротор не имеет обмоток или постоянных магнитов.Вместо этого ротор содержит жилы из магнитного материала с вкраплениями немагнитного материала, расположенные так, что он имеет предпочтительную ориентацию в магнитном поле, создаваемом статором.

Чтобы повернуть ротор, двигатель последовательно активирует электромагниты, создавая вращающееся магнитное поле, которое тянет ротор вперед. Эта конструкция известна как синхронизированный двигатель, потому что активация электромагнитов синхронизирована со скоростью вращения ротора, что не верно для асинхронного двигателя.

Реклама

Версии модели 3 с двумя двигателями имеют асинхронный двигатель спереди и синхронный реактивный двигатель с постоянными магнитами сзади. Model S и Model X меняют это положение, устанавливая асинхронный двигатель сзади и PMSRM спереди.

Комбинирование асинхронного двигателя с PMSRM имеет смысл, поскольку эти два типа двигателей имеют разные рабочие характеристики. Как сказал в прошлом году Илон Маск, «один оптимизирован по мощности, а другой — по дальности.«Асинхронные двигатели обеспечивают высокий крутящий момент на низких скоростях, но в целом они менее энергоэффективны. Таким образом, двухмоторные транспортные средства могут передавать мощность на асинхронный двигатель, когда требуется немедленное быстрое ускорение, а затем передавать мощность на PMSRM в качестве транспортного средства. набирает скорость.

Tesla утверждает, что повышение эффективности Model S и X не произошло за счет снижения крутящего момента. Напротив, компания заявляет, что последние версии улучшились в 0-60 раз по сравнению с более ранними версиями.

Прочие улучшения

Наряду с новой конструкцией двигателя, по словам Тесла, последние модели Model S и X имеют «силовую электронику из карбида кремния, а также улучшенную смазку, охлаждение, подшипники и конструкцию шестерен.«Tesla заявляет, что новые автомобили также лучше справляются с рекуперативным торможением, что позволяет автомобилю возвращать больше своей кинетической энергии при замедлении».

Tesla также переработала пневмоподвеску на Model S и Model X. Новая технология использует «прогнозирующую модель, чтобы предвидеть, как нужно будет отрегулировать демпфирование в зависимости от дороги, скорости и других действий транспортного средства и водителя». Tesla заявляет, что «улучшила выравнивание системы во время крейсерского движения, удерживая автомобиль на низком уровне для оптимизации аэродинамического сопротивления».«

Tesla также сообщает, что она значительно сократила время наддува с максимальной мощностью 200 кВт на новых нагнетателях V3. Tesla заявляет, что клиенты смогут заряжаться на 50 процентов быстрее.

Поправка: В этой истории первоначально говорилось, что реактивный реактивный двигатель — это другое название синхронного реактивного двигателя, а затем было объяснено, как работают реактивные реактивные двигатели. На самом деле это разные типы моторов. Я соответствующим образом изменил историю и сожалею об ошибке.

Мотор Tesla Model 3 — все, что я смог узнать о нем (добро пожаловать в машину)

Любой энтузиаст Tesla хорошо знает, что название, первоначально выбранное для тогдашней Tesla Motors, было основано на конструкции двигателя, приписываемой Николе Тесле, жившему в 19 веке. Практически каждый автомобиль, который производила Tesla, от Roadster до Model S и Model X, был оснащен версией этого почтенного трехфазного асинхронного двигателя переменного тока.

В течение десятилетий после изобретения электродвигатель Николы был привязан к стационарной трехфазной розетке переменного тока. Асинхронный двигатель был окончательно освобожден от якоря в 1960-х годах, когда на помощь пришла Кремниевая долина с цифровой электроникой. Примерно в 1990 году инженер-индивидуалист Алан Коккони разработал один из первых портативных инверторов , , устройство, которое преобразует постоянный ток (DC) в батарее электромобиля в переменный ток (AC), необходимый для асинхронного двигателя.Комбинация инвертор / двигатель была впервые использована в электромобиле, который в конечном итоге стал GM EV1, а позже Коккони применил улучшенную версию этой трансмиссии в спортивном автомобиле tZERO, который позже был обнаружен соучредителями Tesla Motors Мартином Эберхардом и Марком. Тарпеннингом, а чуть позже Илоном Маском.

Tesla в конечном итоге лицензирует технологию трансмиссии tZERO для родстера. Эти исторические точки, соединенные так, как они были, обозначают основную причину, по которой Tesla Motors использовала асинхронный двигатель в своем первом серийном автомобиле (хотя и со многими улучшениями).

Преимущество асинхронного двигателя в том, что он не требует постоянных магнитов. Постоянные магниты достаточной мощности для раскрутки двигателя электромобиля обычно относятся к редкоземельным элементам, которые печально известны такими атрибутами, как высокая начальная стоимость, возможность размагничивания или поломки, проблемы с поставщиками и изменчивость цен. Но транзистор позволил использовать асинхронный двигатель без PM в транспортном секторе. Асинхронный двигатель использует электромагнитов (катушки проволоки, обернутые вокруг сердечника из черного металла), которые можно включать и выключать — или переключать много раз в секунду благодаря транзисторам с эзотерическими названиями, такими как Complementary Metal Oxide. Полевой транзистор (MOS-FET) и, позже, биполярный транзистор с изолированным затвором (IGBT) .

Асинхронный двигатель, конечно, отличная машина. Но это не идеально. Реализация Tesla использует дорогостоящий и трудный для литья ротор, сделанный из чистой меди. А из-за характера работы асинхронных двигателей ротор имеет тенденцию к нагреванию и даже может перегреться. Тепло — это потраченная впустую энергия (известная как потеря i 2 r), и в электромобиле это имеет значение. Асинхронный двигатель также не так эффективен на низких скоростях, как некоторые другие конструкции, поэтому всегда был открыт путь к более эффективному и менее дорогостоящему решению.

На модели 3

Как оказалось, Модель 3 не питается от асинхронного двигателя. Вот это да. Учитывая, что асинхронный двигатель является тезкой Tesla, мы хотим знать, почему. В чем дело? Какой мотор использовала компания вместо этого? Но Тесла не разговаривает. Хорошо, они немного болтают. Нас предупредили о грядущих изменениях еще в 2015 году, когда технический директор Tesla Дж. Б. Штраубель сообщил нам, что Model 3 будет поставляться с « новой моторной технологией. ”Мы также получили известие в конце 2017 года, когда появился документ EPA, в котором говорилось, что в Model 3 использовался… двигатель с постоянными магнитами.Двойное вау. Это было подтверждено ранее в этом году, когда в статье Charged цитируется главный конструктор двигателей Tesla Константинос Ласкарис, который охарактеризовал новый двигатель следующим образом: «Итак, как вы знаете, в нашей Model 3 теперь есть машина с постоянными магнитами. Это связано с тем, что с точки зрения технических характеристик и эффективности машина с постоянными магнитами лучше решала нашу функцию минимизации затрат и была оптимальной для диапазона и целевой производительности ».

Угу. Итак, теперь мы точно знаем, что модель 3 — это , а не с использованием асинхронного двигателя, а — это с использованием двигателя с постоянными магнитами.Фактически, в документе EPA фактически указан тип двигателя — с опечаткой — как «ТРЕХФАЗНЫЙ МАГНИТ ПЕРЕМЕННОГО ТОКА» (для справки, Chevy Bolt EV использует трехфазный двигатель с постоянными магнитами). Но я считаю, что это все, что мы можем сказать, что мы знаем . С этого момента это предположение. Догадки. Тем не менее, это лишь догадки, когда части мозаики начинают довольно хорошо складываться. Давайте посмотрим, сможем ли мы установить, действительно ли в Model 3 используется тот же тип двигателя, что и, скажем, Bolt, как это и возникло вначале.

Представляем гуру разборки автомобилей Ingineerix. В феврале Ingineerix опубликовал серию увлекательных видеороликов, исследующих работу Model 3. В записи под названием «Темная сторона» он исследует днище автомобиля и начинает называть компоненты и подсистемы, как если бы он читал с телесуфлера. . Действительно подробный материал, который, насколько мне известно, раньше публично не разъяснялся. Парень, кажется, действительно знает свое дело. Я обратился к Ingineerix в разделе комментариев к видео, где он рассказал, что в автомобиле есть «электродвигатель с регулируемым сопротивлением, использующий постоянные магниты.Ingineerix продолжил: «Tesla называет это PMSRM, электродвигателем с постоянным магнитом, управляемым сопротивлением. Это новый тип, и его очень сложно понять, но Tesla сделала это! »

Ну привет. Это действительно лошадь совсем другого окраса. Немногие слышали о электродвигателях с регулируемым сопротивлением. Что это за животное? И как может все, что позволяет автомобилю весом 3800 фунтов разгоняться до 60 миль в час примерно за 5 секунд, называться противодействующими ? Давайте ответим на оба эти вопроса по пути к открытию нескольких кусочков головоломки.

Чтобы лучше понять, что такое , достойный модели 3 в реактивном двигателе, мы должны сначала освежить наши воспоминания о том, как работает традиционный трехфазный асинхронный двигатель переменного тока Tesla (о котором я подробно писал здесь). Даже если вы не любитель моторики, просто обратите внимание на одно наблюдение, касающееся двигателя: индукция часть названия технологии связана с тем фактом, что вместо использования дорогих постоянных магнитов на роторе создается большое магнитное поле. от неподвижной части двигателя (статора) на самом деле наводит противоположное магнитное поле на высокопроводящий медный ротор.И мы знаем, что происходит, когда два противоположных магнитных поля взаимодействуют: они притягиваются друг к другу. Если у вас есть магнит на кухонном столе, и вы перемещаете поблизости другой магнит противоположной полярности, магнит в вашей руке притягивает к себе другой магнит. Точно так же, когда два противоположных магнитных поля, генерируемых внутри двигателя Ludicrous Model S P100D, взаимодействуют … автомобиль взлетает, как летучая мышь из ада.

Разве это не наука?

Реактивный двигатель способен на подобную магию.Однако в этом случае конструкция не основана на двух магнитных полях , взаимодействующих друг с другом. Есть только , одно магнитное поле. Как это может быть? Что ж, вернитесь к тому кухонному столу и замените один из этих магнитов небольшим куском железа или стали. Что произойдет, если вы переместите оставшийся магнит к металлу? Магнит, конечно же, притянет кусок металла к себе. А что, если бы вы сделали ротор электродвигателя из всего лишь очищенного куска стали, но сохранили существующие электромагниты в статоре? Поскольку электромагниты включаются и выключаются в правильной последовательности, они заставят стальной цилиндр повернуться.Поздравляем, вы только что сконструировали резистивный двигатель! И тот факт, что электромагниты переключаются и выключаются последовательно, вращает ротор (как в случае с асинхронным двигателем), у вас есть то, что называется Switched Reluctance Machine .

Пазлы

Давайте представим на мгновение, что вам была поручена работа по разработке нового двигателя для Model 3. Илон Маск указал, что ваш дизайн должен стоить меньше, чем двигатель Model S.Вас также проинструктировали, что двигатель не должен снижать производительность, но при этом он должен быть легче и эффективнее, чем его собрат. Что бы вы сделали?

Вы бы подумали о том, чтобы устроиться на работу в «Макдональдс» по дороге от фабрики во Фремонте. Нет, нет — после . Вот подсказка: вы должны изучить все существующие архитектуры электродвигателей. При этом вы столкнетесь с конструкцией, которая на самом деле старше изобретения Николы Теслы 1892 года. Более чем 50 лет назад машина сопротивления была изобретена в 1838 году.И это на удивление приятный дизайн. Машина сопротивления проста, эффективна, компактна. И это недорого в производстве. Тем не менее, резистивный двигатель простоял на полке более века, страдая от изнурительной болезни под названием Torque Ripple (из-за склонности резистивной машины вызывать явление, известное как зубчатая передача). Пульсация крутящего момента просто означает, что выходная мощность реактивного двигателя колеблется вверх и вниз. Конечно, для электромобиля не годится. Когда вы нажимаете педаль на металл, вам нужен приятный плавный темп ускорения.

Реактивная машина была частично спасена с помощью той же технологии, которая позволила установить асинхронный двигатель в электромобиль — силовой электроники из Кремниевой долины. Реактивный двигатель, как известно, трудно контролировать (число оборотов, определение положения ротора и т. Д.), Но современные инверторы и системы управления помогли преодолеть эту слабость. Тем не менее, проблема пульсации крутящего момента оставалась проблемой даже при приближении 21-го века -го и -го. Но, ковыряясь вокруг, вы начинаете замечать некоторые исследования по этой теме, проводившиеся в первом десятилетии этого века.Вы встречаете исследовательский документ 2011 года, в котором утверждается, что проблема пульсации крутящего момента решена. Исследователь встроил несколько небольших редкоземельных магнитов в статор реактивного двигателя вместе с существующими электромагнитами . При этом кривая крутящего момента сгладилась. В качестве бонуса в документе утверждается, что за счет включения редкоземельных элементов достигается 30% -ное увеличение выходной мощности. Теперь есть несколько основных принципов мышления. Тот, кто первым подумал о шнуровке статора редкоземельными элементами, очевидно, придумал величайший брак с тех пор, как кто-то подумал погрузить плитку шоколада в банку с арахисовым маслом, чтобы получить чашку с арахисовым маслом Риза.

Ваши мысли объединяются. После того как были решены две основные проблемы машины сопротивления, вы делаете решительный шаг и начинаете работать с этой конструкцией. Первое, что вы можете сделать, это отказаться от дорогого медного ротора в старом двигателе и заменить его гораздо более дешевым ротором из черного металла. Наверное, сталь. И, наверное, кремнистая сталь. Вы только что сэкономили кучу денег. Далее, хотя редкоземельные элементы и дороги, они используются в статоре , а не в роторе , как в традиционном двигателе с постоянными магнитами, поэтому вы собираетесь дополнить электромагниты относительно небольшими постоянными магнитами.Выбранная вами конструкция имеет некоторые проблемы с акустическим шумом, но вы чувствуете, что ее стоит продолжить, потому что это самый простой и дешевый в изготовлении двигатель, но при этом он очень эффективен и мощный (особенно с этими редкоземельными элементами). Молодец!


Итак, первый кусок головоломки в теории о том, что Тесла поместил реактивный электродвигатель в Модель 3, — это магниты. Мы знаем, что они там есть, и теперь мы знаем, что одним из последних достижений в конструкции двигателей стало включение редкоземельных элементов в статор реактивного резистора.Это огромно. Он вывел машину сопротивления из нафталина!

Еще один признак того, что двигатель Model 3 не использует эти редкоземельные элементы в конструкции обычного двигателя с постоянными магнитами, заключается в том, что автомобиль не регенерирует полностью до 0 миль в час. Например, у Bolt есть обычный трехфазный двигатель с постоянными магнитами, который позволяет ему выполнять регенерацию до 0 миль в час. Я убедился в этом в прошлом году, когда тестировал Bolt — вы можете остановиться, не нажимая на тормоза. Мы называем эту головоломку №2.

Вот еще один: наклейка «дилер» на Model 3 в выставочных залах указывает на «Трехфазный, , шестиполюсный, , внутренний двигатель с постоянными магнитами». Асинхронный двигатель Tesla имеет 4 полюса, как и многие электромоторы. Почему тогда шестиполюсный двигатель? Это ссылка на способ подключения катушек на статоре для работы с трехфазным питанием (три отдельные ветви питания). Чем ближе расстояние между полюсами, тем меньше времени может быть для снижения крутящего момента. Возможно, это способ Tesla еще больше сгладить пульсацию крутящего момента.Это кусок пазла №3.

Часть головоломки №4 заключается в том, что различные публикации по инженерному делу / проектированию двигателей начинают говорить о машине сопротивления (см. Ссылки на статьи ниже). И мы начинаем видеть, как дизайн сопротивления появляется в электромобилях, таких как Prius. Кроме того, UPS объявила, что в программе по переводу их парка на электроэнергию будет использоваться переключаемая машина сопротивления. Компания заявляет, что внедрение реактивного двигателя по сравнению с другими конструкциями сократит время зарядки и повысит энергоэффективность до 20% (однако компания отказывается от использования редкоземельных магнитов).И, в целом, начинают появляться отраслевые приложения для обновленных конструкций реактивных двигателей. Например, в недавней статье CleanTechnica компания Software Motor Company (SMC) заявляет, что ее новый неохотный дизайн машины — с тем, что они называют своей собственной версией «секретного соуса» — сэкономит 50% затрат на электроэнергию по сравнению с текущим асинхронные двигатели, используемые в Walmart для HVAC и т. д.

Наконец, мотор в Model 3 действительно меньше мотора Model S. В недавнем видео Джека Рикарда на EVTV, посвященном Model 3, Джек утверждал, что мотор Model 3 на самом деле меньше, чем даже меньший передний мотор на Model S.Тем не менее, производительность не сильно пострадала. Некоторые владельцы сообщают, что в их Model 3 в 0–60 раз быстрее, чем в 4,8 секунды. Это, конечно, отчасти связано с тем, что на 1000 фунтов меньше веса, чем у S, но все же давайте условно назовем эту головоломку № 5.

Дальнейшая поддержка части № 5 исходит из продолжающихся комментариев Рикарда, пока он все еще находится под автомобилем (Рикард, кстати, зашел так далеко в кроличью нору трансмиссии Tesla, насколько я когда-либо слышал). Экстраполируя документы EPA, Джек называет «потерю заряда аккумулятора на колеса» в Model 3 на 6 процентных пунктов более эффективным, чем у Model S (89% электроэнергии преобразуется в поступательное движение по сравнению с 83% для S).

Фотография мотора Tesla Model 3 снизу автомобиля. Предоставлено EVTV.


Сводка

Благодаря прорыву в конструкции реактивных машин за последние несколько лет, мы, возможно, станем свидетелями кардинальных изменений в трансмиссии для рынка электромобилей. Учитывая отчеты о производительности Model 3, заявленный скачок миль на кВтч, о котором сообщают владельцы по сравнению с предыдущими моделями Tesla, а также наши 5 простых частей пазла, можно сделать разумную ставку на то, что Tesla усовершенствовала машину сопротивления и тем самым так вытащил инженерного кролика из шляпы.

Независимо от конструкции двигателя, Tesla явно выбила из парка силовой агрегат Model 3. Они дали своей команде разработчиков двигателей, если не бланк, пустую доску, и команда разработала дизайн, подходящий не только для доступного электромобиля, но и для грядущей Tesla Semi.

Отметим, что главный конструктор Ласкарис присоединился к Tesla после того, как в году была разработана Model S. Его голова, должно быть, была полна свежих идей, когда он ранее был соучредителем проекта по разработке и созданию эффективного электромобиля.Как и Штробель, Ласкарис тяготел к Тесле, уже имея представление о том, что будущее за электричеством.

Конструкция двигателя 3 также помогла Tesla достичь заявленной цели сокращения количества деталей на 25% за счет того, что двигатель выполняет двойную функцию в качестве источника тепла для нагрева тягового аккумулятора. ( Примечание: Tesla была настолько впечатлена талантами, которые пришли из школы Ласкариса в Греции, что компания открыла в стране небольшой исследовательский центр. )

Хотя использование машины сопротивления в Model 3 еще предстоит проверить, учитывая внезапные разговоры в стольких кругах о стольких применениях этой моторной технологии, трудно поверить, что у Tesla не было бы места в первом ряду для этого. мероприятие.В общем, вполне вероятно, что 2018 год станет годом реактивного двигателя. Добро пожаловать в машину.

Дополнительные ссылки:

Понимание машин сопротивления:
Wiki article
MachineDesign.com article
Charged EV; Более пристальный взгляд на электродвигатели с переключаемым сопротивлением
Заряженный электромобиль: более пристальный взгляд на пульсацию крутящего момента

Добавление PM к реактивным электродвигателям
IEEE document
2011 white paper

Другое:
Разборка модели 3 компанией Ingineerix
История электродвигателя

Эта статья была немного изменена для точности после публикации.

Цените оригинальность CleanTechnica? Подумайте о том, чтобы стать участником, сторонником, техническим специалистом или представителем CleanTechnica — или покровителем Patreon.


Реклама
У вас есть совет для CleanTechnica, вы хотите разместить рекламу или предложить гостя для нашего подкаста CleanTech Talk? Свяжитесь с нами здесь.
Многофазные асинхронные двигатели

тесла | Двигатели переменного тока

Большинство двигателей переменного тока являются асинхронными.Асинхронные двигатели пользуются популярностью из-за их прочности и простоты. Фактически, 90% промышленных двигателей являются асинхронными.

Никола Тесла разработал основные принципы многофазного асинхронного двигателя в 1883 году и к 1888 году создал модель мощностью в половину лошадиных сил (400 Вт). Тесла продал права на производство Джорджу Вестингаузу за 65 000 долларов.

Самые большие (> 1 л.с. или 1 кВт) промышленные двигатели — это многофазные асинхронные двигатели . Под многофазностью мы подразумеваем, что статор содержит несколько различных обмоток на каждый полюс двигателя, приводимых в действие соответствующими синусоидальными волнами со сдвигом во времени.

На практике это две или три фазы. Крупные промышленные двигатели трехфазные. Хотя для простоты мы включили многочисленные иллюстрации двухфазных двигателей, мы должны подчеркнуть, что почти все многофазные двигатели являются трехфазными.

Под асинхронным двигателем мы подразумеваем, что обмотки статора индуцируют ток в проводниках ротора, как трансформатор, в отличие от коллекторного двигателя постоянного тока.

Конструкция асинхронного двигателя переменного тока

Асинхронный двигатель состоит из ротора, известного как якорь, и статора, содержащего обмотки, подключенные к многофазному источнику энергии, как показано на рисунке ниже.Простой двухфазный асинхронный двигатель, представленный ниже, похож на двигатель мощностью 1/2 лошадиные силы, который Никола Тесла представил в 1888 году.

Многофазный асинхронный двигатель Tesla

Статор на рисунке выше намотан парами катушек, соответствующих фазам доступной электрической энергии. Статор двухфазного асинхронного двигателя выше имеет 2 пары катушек, по одной паре для каждой из двух фаз переменного тока.

Отдельные катушки пары соединены последовательно и соответствуют противоположным полюсам электромагнита.То есть одна катушка соответствует N-полюсу, другая — S-полюсу, пока фаза переменного тока не изменит полярность. Другая пара катушек ориентирована в пространстве под углом 90 ° к первой паре.

Эта пара катушек подключена к переменному току со сдвигом во времени на 90 ° в случае двухфазного двигателя. Во времена Теслы источником двух фаз переменного тока был двухфазный генератор переменного тока.

Статор на рисунке выше имеет выступающих , явно выступающих полюсов, которые использовались в ранних асинхронных двигателях Tesla. Эта конструкция используется и по сей день для двигателей с малой мощностью (<50 Вт).Однако для более мощных двигателей меньшая пульсация крутящего момента и более высокий КПД будут иметь место, если катушки встроены в пазы, вырезанные в пластинах статора (рисунок ниже).

Рама статора с пазами для обмоток

Пластины статора представляют собой тонкие изолированные кольца с прорезями, пробитыми из листов электротехнической стали. Набор из них закреплен концевыми винтами, которые также могут удерживать концевые кожухи.

Статор с обмотками 2 φ (а) и 3 φ (б)

На рисунке выше обмотки двухфазного и трехфазного двигателей установлены в пазы статора.Катушки наматываются на внешнее приспособление, а затем вставляются в пазы. Изоляция, зажатая между периферией катушки и пазом, защищает от истирания.

Фактические обмотки статора более сложные, чем отдельные обмотки на полюс на рисунке выше. Сравнивая двигатель 2-φ с двигателем Tesla 2-φ с явными полюсами, количество катушек такое же. В реальных больших двигателях обмотка полюса разделена на идентичные катушки, вставленные во множество пазов меньшего размера, чем указано выше.

Эта группа называется фазовой лентой (см. Рисунок ниже).Распределенные катушки фазового пояса подавляют некоторые нечетные гармоники, создавая более синусоидальное распределение магнитного поля по полюсу. Это показано в разделе синхронного двигателя.

В пазах на краю стойки может быть меньше витков, чем в других пазах. Краевые пазы могут содержать обмотки от двух фаз. То есть фазовые пояса перекрываются.

Ключом к популярности асинхронного двигателя переменного тока является его простота, о чем свидетельствует простой ротор (рисунок ниже).Ротор состоит из вала, стального пластинчатого ротора и встроенной медной или алюминиевой беличьей клетки , показанной на (b), снятой с ротора.

По сравнению с якорем двигателя постоянного тока, здесь нет коммутатора. Это устраняет щетки, искрение, искрение, графитовую пыль, регулировку и замену щеток, а также повторную обработку коллектора.

Многослойный ротор с (а) встроенной беличьей клеткой, (б) токопроводящей клеткой, удаленной с ротора

Проводники в короткозамкнутой клетке могут быть перекошены, перекручены относительно вала.Несоосность пазов статора снижает пульсации крутящего момента.

Сердечники ротора и статора состоят из пакета изолированных пластин. Пластины покрыты изолирующим оксидом или лаком для минимизации потерь на вихревые токи. Сплав, используемый в пластинах, выбран из соображений низких гистерезисных потерь.

Теория работы асинхронных двигателей

Краткое объяснение работы заключается в том, что статор создает вращающееся магнитное поле, которое волочит ротор.

Теория работы асинхронных двигателей основана на вращающемся магнитном поле. Один из способов создания вращающегося магнитного поля — вращение постоянного магнита. Если движущиеся магнитные линии потока разрезают проводящий диск, он будет следовать за движением магнита.

Линии магнитного потока, разрезающие проводник, будут индуцировать напряжение и, как следствие, ток в проводящем диске. Этот поток тока создает электромагнит, полярность которого противодействует движению постоянного магнита — Закон Ленца .

Полярность электромагнита такова, что он притягивается к постоянному магниту. Диск следует с немного меньшей скоростью, чем постоянный магнит.

Вращающееся магнитное поле создает крутящий момент в проводящем диске

Крутящий момент, развиваемый диском, пропорционален количеству силовых линий, разрезающих диск, и скорости, с которой он разрезает диск. Если бы диск вращался с той же скоростью, что и постоянный магнит, не было бы ни потока, разрезающего диск, ни индуцированного тока, ни поля электромагнита, ни крутящего момента.

Таким образом, скорость диска всегда будет ниже скорости вращающегося постоянного магнита, так что линии потока, разрезающие диск, индуцируют ток, создают электромагнитное поле в диске, которое следует за постоянным магнитом.

Если к диску приложена нагрузка, замедляющая его, будет развиваться больший крутящий момент, поскольку больше линий магнитного потока разрезают диск. Крутящий момент пропорционален скольжению , степени, в которой диск отстает от вращающегося магнита. Большее скольжение соответствует большему потоку, разрезающему проводящий диск, создавая больший крутящий момент.

В основе аналогового автомобильного вихретокового спидометра лежит принцип, проиллюстрированный выше. Когда диск удерживается пружиной, отклонение диска и иглы пропорционально скорости вращения магнита.

Вращающееся магнитное поле создается двумя катушками, расположенными под прямым углом друг к другу, и приводится в действие токами, которые не совпадают по фазе на 90 °. Это не должно вызывать удивления, если вы знакомы с диаграммами Лиссажу на осциллографе.

В противофазе (90 °) синусоидальные волны образуют круговой узор Лиссажу

На приведенном выше рисунке круговой Лиссажу создается путем подачи на входы осциллографа горизонтального и вертикального сдвига по фазе синусоидальных волн на 90 °.Начиная с (a) с максимальным отклонением «X» и минимальным «Y», след перемещается вверх и влево в направлении (b).

Между (a) и (b) две формы волны равны 0,707 Впик при 45 °. Эта точка (0,707, 0,707) попадает на радиус круга между (a) и (b). Трасса перемещается в (b) с минимальным отклонением «X» и максимальным «Y». При максимальном отрицательном отклонении «X» и минимальном отклонении «Y» след переместится в (c).

Затем с минимальным «X» и максимальным отрицательным «Y» он переходит в (d), а затем обратно в (a), завершая один цикл.

Синус по оси X и косинус по оси Y по окружности

На рисунке показаны две синусоидальные волны с фазовым сдвигом на 90 °, приложенные к отклоняющим пластинам осциллографа, расположенным под прямым углом в пространстве. Комбинация фазированных синусоидальных волн на 90 ° и отклонения под прямым углом дает двумерный узор — круг. Этот круг очерчен электронным лучом, вращающимся против часовой стрелки.

Для справки, на рисунке ниже показано, почему синфазные синусоидальные волны не образуют круговой диаграммы.Равное отклонение «X» и «Y» перемещает освещенное пятно из исходной точки в (a) вправо (1,1) в (b), назад вниз влево к исходной точке в (c), вниз влево до (-1 .-1) в точке (d) и обратно в исходное положение. Линия получается равными прогибами по обеим осям; y = x — прямая линия.

Нет кругового движения синфазных сигналов

Если пара синусоидальных волн, сдвинутых на 90 ° по фазе, создает круговую форму Лиссажу, аналогичная пара токов должна быть способна создавать круговое вращающееся магнитное поле.Так обстоит дело с двухфазным двигателем. По аналогии, три обмотки, расположенные в пространстве на 120 ° друг от друга и питаемые соответствующими фазированными токами 120 °, также будут создавать вращающееся магнитное поле.

Вращающееся магнитное поле синусоидальной волны, фазированной под углом 90 °

По мере того, как синусоидальные волны с фазой 90 °, показанные на рисунке выше, развиваются от точек (a) до (d), магнитное поле вращается против часовой стрелки (рисунки a-d) следующим образом:

  • (а) φ-1 максимум, φ-2 ноль
  • (a ’) φ-1 70%, φ-2 70%
  • (б) φ-1 ноль, φ-2 максимум
  • (c) φ-1 максимально отрицательный, φ-2 ноль
  • (d) φ-1 ноль, φ-2 максимальное отрицательное значение

Полная скорость двигателя и скорость синхронного двигателя

Скорость вращения вращающегося магнитного поля статора связана с количеством пар полюсов на фазу статора.На приведенном ниже рисунке «полная скорость» всего шесть полюсов или три пары полюсов и три фазы. Однако на каждую фазу приходится только одна пара полюсов.

Магнитное поле будет вращаться один раз за цикл синусоидальной волны. В случае мощности 60 Гц поле вращается со скоростью 60 раз в секунду или 3600 оборотов в минуту (об / мин). При мощности 50 Гц он вращается со скоростью 50 оборотов в секунду или 3000 об / мин. 3600 и 3000 об / мин — это синхронная скорость двигателя.

Хотя ротор асинхронного двигателя никогда не достигает этой скорости, это определенно верхний предел.Если мы удвоим количество полюсов двигателя, синхронная скорость уменьшится вдвое, потому что магнитное поле вращается в пространстве на 180 ° на 360 ° электрической синусоидальной волны.

Удвоение полюсов статора уменьшает синхронную скорость вдвое

Синхронная скорость определяется по формуле:

 N  с  = 120 · f / P N  с  = синхронная скорость в об / мин f = частота подаваемой мощности, Гц P = общее количество полюсов на фазу, кратное 2 
  Пример:  На приведенном выше рисунке «половинная скорость» четыре полюса на фазу (3 фазы).Синхронная скорость для мощности 50 Гц составляет: S = 120 · 50/4 = 1500 об / мин 

Краткое объяснение асинхронного двигателя состоит в том, что вращающееся магнитное поле, создаваемое статором, тащит за собой ротор.

Более подробное и более правильное объяснение состоит в том, что магнитное поле статора индуцирует переменный ток в проводниках короткозамкнутого ротора, которые составляют вторичную обмотку трансформатора. Этот индуцированный ток ротора, в свою очередь, создает магнитное поле.

Магнитное поле вращающегося статора взаимодействует с этим полем ротора.Поле ротора пытается выровняться с полем вращающегося статора. Результат — вращение ротора с короткозамкнутым ротором. Если бы не было механической нагрузки крутящего момента двигателя, подшипников, сопротивления ветра или других потерь, ротор вращался бы с синхронной скоростью.

Однако проскальзывание между ротором и полем статора синхронной скорости развивает крутящий момент. Именно магнитный поток, разрезающий проводники ротора при его проскальзывании, создает крутящий момент. Таким образом, нагруженный двигатель будет скользить пропорционально механической нагрузке.

Если бы ротор работал с синхронной скоростью, не было бы потока статора, разрезающего ротор, не было бы тока, индуцированного в роторе, не было бы крутящего момента.

Крутящий момент в асинхронных двигателях

Когда питание подается на двигатель впервые, ротор находится в состоянии покоя, а магнитное поле статора вращается с синхронной скоростью N s . Поле статора режет ротор с синхронной скоростью N s . Ток, индуцированный в закороченных витках ротора, является максимальным, как и частота тока, частота сети.

По мере увеличения скорости ротора скорость, с которой магнитный поток статора сокращает ротор, представляет собой разницу между синхронной скоростью N s и фактической скоростью N ротора, или (N s — N). Отношение фактического потока, разрезающего ротор, к синхронной скорости определяется как скольжение :

 s = (N  s  - N) / N  s  где: N  s  = синхронная скорость, N = скорость ротора 

Частота тока, наведенного в проводники ротора, равна только частоте сети при пуске двигателя и уменьшается по мере приближения ротора к синхронной скорости. Частота ротора определяется по:

 f  r  = s · f где: s = скольжение, f = частота линии электропередачи статора 

Скольжение при 100% крутящем моменте обычно составляет 5% или меньше в асинхронных двигателях. Таким образом, для частоты сети f = 50 Гц частота наведенного тока в роторе fr = 0,05 · 50 = 2,5 Гц. Почему он такой низкий? Магнитное поле статора вращается с частотой 50 Гц. Скорость вращения ротора на 5% меньше.

Вращающееся магнитное поле режет только ротор на 2.5 Гц. 2,5 Гц — это разница между синхронной скоростью и фактической скоростью ротора. Если ротор вращается немного быстрее при синхронной скорости, никакой магнитный поток не будет резать ротор вообще, f r = 0.

Крутящий момент и скорость в зависимости от% скольжения. % N с =% синхронной скорости

На рисунке выше показано, что пусковой крутящий момент, известный как крутящий момент заторможенного ротора (LRT), превышает 100% крутящего момента при полной нагрузке (FLT), безопасного продолжительного крутящего момента.Крутящий момент заблокированного ротора составляет около 175% от FLT для приведенного выше примера двигателя.

Пусковой ток, известный как , ток заторможенного ротора (LRC) составляет 500% от тока полной нагрузки (FLC), безопасного рабочего тока. Ток большой, потому что это аналог закороченной вторичной обмотки трансформатора. Когда ротор начинает вращаться, крутящий момент может немного уменьшиться для определенных классов двигателей до значения, известного как тяговый момент .

Это наименьшее значение крутящего момента, с которым когда-либо сталкивался пусковой двигатель.Когда ротор набирает 80% синхронной скорости, крутящий момент увеличивается со 175% до 300% крутящего момента полной нагрузки. Этот крутящий момент пробоя происходит из-за большего, чем обычно, 20% скольжения.

Сила тока в этот момент уменьшилась лишь незначительно, но после этой точки будет быстро уменьшаться. Когда ротор ускоряется с точностью до нескольких процентов от синхронной скорости, как крутящий момент, так и ток значительно уменьшаются. При нормальной работе проскальзывание составит всего несколько процентов.

Для работающего двигателя любой участок кривой крутящего момента ниже 100% номинального крутящего момента является нормальным.Нагрузка двигателя определяет рабочую точку на кривой крутящего момента. В то время как крутящий момент и ток двигателя могут превышать 100% в течение нескольких секунд во время запуска, продолжительная работа выше 100% может привести к повреждению двигателя.

Любая крутящая нагрузка двигателя, превышающая крутящий момент пробоя, приведет к остановке двигателя. Крутящий момент, скольжение и ток будут приближаться к нулю в условиях нагрузки «без механического крутящего момента». Это условие аналогично разомкнутому вторичному трансформатору.

Существует несколько основных конструкций асинхронных двигателей, которые значительно отличаются от кривой крутящего момента, приведенной выше.Различные конструкции оптимизированы для запуска и работы с различными типами нагрузок. Крутящий момент заблокированного ротора (LRT) для двигателей различных конструкций и размеров находится в диапазоне от 60% до 350% момента полной нагрузки (FLT).

Пусковой ток или ток заторможенного ротора (LRC) может находиться в диапазоне от 500% до 1400% от тока полной нагрузки (FLC). Этот потребляемый ток может вызвать проблемы с запуском больших асинхронных двигателей.

Классы двигателей NEMA и IEC

Различные стандартные классы (или конструкции) двигателей, соответствующие кривым крутящего момента (рисунок ниже), были разработаны для лучшего управления нагрузками различных типов.Национальная ассоциация производителей электрооборудования (NEMA) определила классы двигателей A, B, C и D для удовлетворения этих требований к приводам.

Аналогичные классы N и H Международной электротехнической комиссии (МЭК) соответствуют конструкциям NEMA B и C соответственно.

Характеристики для проектов NEMA

Все двигатели, за исключением класса D, работают со скольжением 5% или менее при полной нагрузке.

  • Класс B (IEC Class N) Двигатели используются по умолчанию в большинстве приложений.При пусковом моменте LRT = от 150% до 170% от FLT он может запускать большинство нагрузок без чрезмерного пускового тока (LRT). КПД и коэффициент мощности высокие. Обычно он приводит в действие насосы, вентиляторы и станки.
  • Пусковой момент класса A такой же, как у класса B. Пусковой момент и пусковой ток (LRT) выше. Этот двигатель справляется с кратковременными перегрузками, которые встречаются в машинах для литья под давлением.
  • Class C (IEC Class H) имеет более высокий пусковой момент, чем классы A и B при LRT = 200% от FLT.Этот двигатель применяется для тяжелых пусковых нагрузок, которые необходимо приводить в действие с постоянной скоростью, таких как конвейеры, дробилки, поршневые насосы и компрессоры.
  • Двигатели класса D имеют самый высокий пусковой момент (LRT) в сочетании с низким пусковым током из-за высокого скольжения (от 5% до 13% при FLT). Высокое скольжение приводит к более низкой скорости. Регулировка скорости плохая. Тем не менее, двигатель отлично справляется с нагрузками с переменной скоростью, например с маховиком для аккумулирования энергии. Применяется в пробивных прессах, ножницах и элеваторах.
  • Класс E Двигатели являются версией класса B с более высоким КПД.
  • Класс F Двигатели имеют гораздо более низкие LRC, LRT и крутящий момент, чем у класса B. Они управляют постоянными, легко запускаемыми нагрузками.

Коэффициент мощности асинхронных двигателей

Асинхронные двигатели имеют отстающий (индуктивный) коэффициент мощности от линии электропередачи. Коэффициент мощности больших полностью нагруженных высокоскоростных двигателей может достигать 90% для больших высокоскоростных двигателей. При 3/4 полной нагрузки максимальный коэффициент мощности высокоскоростного двигателя может составлять 92%.

Коэффициент мощности малых тихоходных двигателей может составлять всего 50%. При запуске коэффициент мощности может находиться в диапазоне от 10% до 25%, увеличиваясь по мере достижения ротором скорости.

Коэффициент мощности (PF) значительно зависит от механической нагрузки двигателя (рисунок ниже). Ненагруженный двигатель аналогичен трансформатору без резистивной нагрузки на вторичной обмотке. Небольшое сопротивление отражается от вторичной обмотки (ротора) к первичной обмотке (статору).

Таким образом, в линии электропередачи присутствует реактивная нагрузка до 10% коэффициента мощности.Когда ротор нагружен, возрастающая резистивная составляющая отражается от ротора к статору, увеличивая коэффициент мощности.

Коэффициент мощности и КПД асинхронного двигателя

КПД асинхронных двигателей

Большие трехфазные двигатели более эффективны, чем трехфазные двигатели меньшего размера, и почти все однофазные двигатели. КПД большого асинхронного двигателя может достигать 95% при полной нагрузке, хотя чаще встречается 90%.

Эффективность малонагруженного или ненагруженного асинхронного двигателя низкая, поскольку большая часть тока связана с поддержанием намагничивающего потока. Когда нагрузка крутящего момента увеличивается, больше тока потребляется для создания крутящего момента, в то время как ток, связанный с намагничиванием, остается фиксированным. Эффективность при 75% FLT может быть немного выше, чем при 100% FLT.

Эффективность снижается на несколько процентов при FLT 50% и снижается еще на несколько процентов при FLT 25%. Эффективность становится низкой только ниже 25% FLT.Изменение КПД в зависимости от нагрузки показано на рисунке выше.

Асинхронные двигатели

, как правило, имеют завышенные размеры, чтобы гарантировать, что их механическая нагрузка может быть запущена и приведена в действие в любых условиях эксплуатации. Если многофазный двигатель нагружен менее 75% номинального крутящего момента, когда КПД достигает пика, КПД снижается лишь незначительно до 25% FLT.

Корректор коэффициента мощности Nola

Фрэнк Нола из НАСА предложил корректор коэффициента мощности (PFC) в качестве энергосберегающего устройства для однофазных асинхронных двигателей в конце 1970-х годов.Он основан на предположении, что асинхронный двигатель с неполной нагрузкой менее эффективен и имеет более низкий коэффициент мощности, чем двигатель с полной нагрузкой. Таким образом, в частично загруженных двигателях, в частности, в двигателях 1-φ, можно сэкономить энергию.

Энергия, потребляемая для поддержания магнитного поля статора, относительно фиксирована по отношению к изменениям нагрузки. Хотя в полностью загруженном двигателе экономить нечего, напряжение на частично загруженном двигателе может быть уменьшено, чтобы уменьшить энергию, необходимую для поддержания магнитного поля.

Это увеличит коэффициент мощности и эффективность. Это была хорошая концепция для заведомо неэффективных однофазных двигателей, для которых она предназначалась.

Эта концепция не очень применима к большим трехфазным двигателям. Из-за их высокого КПД (90% +) экономия энергии невелика. Более того, двигатель с КПД 95% по-прежнему имеет КПД 94% при 50% крутящем моменте при полной нагрузке (FLT) и 90% КПД при 25% FLT.

Потенциальная экономия энергии при переходе от 100% FLT к 25% FLT — это разница в эффективности 95% — 90% = 5%.Это не 5% мощности при полной нагрузке, а 5% мощности при пониженной нагрузке. Корректор коэффициента мощности Nola может быть применим к 3-фазному двигателю, который большую часть времени простаивает (ниже 25% FLT), например к пробивному прессу.

Срок окупаемости дорогостоящего электронного контроллера оценивается как непривлекательный для большинства приложений. Тем не менее, он может быть экономичным в составе электронного пускателя двигателя или регулятора скорости.

Асинхронные двигатели в качестве генераторов переменного тока

Асинхронный двигатель может работать как генератор переменного тока, если он приводится в действие крутящим моментом, превышающим 100% синхронной скорости (рисунок ниже).Это соответствует нескольким% «отрицательного» скольжения, скажем, -1%.

Это означает, что поскольку мы вращаем двигатель быстрее, чем синхронная скорость, ротор движется на 1% быстрее, чем вращающееся магнитное поле статора. Обычно он отстает в двигателе на 1%. Поскольку ротор разрезает магнитное поле статора в противоположном направлении (впереди), ротор индуцирует напряжение в статоре, возвращая электрическую энергию обратно в линию электропередачи.

Отрицательный момент превращает асинхронный двигатель в генератор

Такой индукционный генератор должен возбуждаться «живым» источником мощностью 50 или 60 Гц.В случае сбоя в электроснабжении энергокомпании выработка электроэнергии невозможна. Этот тип генератора не подходит в качестве резервного источника питания.

В качестве вспомогательного ветряного генератора он имеет то преимущество, что не требует автоматического выключателя отключения питания для защиты ремонтных бригад.

Он отказоустойчив.

Небольшие удаленные (от электросети) установки могут быть выполнены с самовозбуждением путем размещения конденсаторов параллельно фазам статора. Если снять нагрузку, остаточный магнетизм может вызвать небольшой ток.

Этот ток может протекать через конденсаторы без рассеивания мощности. Когда генератор достигает полной скорости, ток увеличивается, чтобы подать ток намагничивания на статор. В этот момент может быть приложена нагрузка. Слабое регулирование напряжения. Асинхронный двигатель может быть преобразован в генератор с самовозбуждением путем добавления конденсаторов.

Процедура запуска заключается в доведении ветряной турбины до скорости в двигательном режиме путем подачи на статор нормального напряжения линии электропередачи.Любая вызванная ветром скорость турбины, превышающая синхронную, будет развивать отрицательный крутящий момент, возвращая мощность в линию электропередачи, изменяя нормальное направление электрического счетчика киловатт-часов.

В то время как асинхронный двигатель представляет отстающий коэффициент мощности по отношению к линии электропередачи, асинхронный генератор переменного тока имеет ведущий коэффициент мощности. Индукционные генераторы не используются широко на обычных электростанциях.

Скорость привода паровой турбины стабильна и регулируется в соответствии с требованиями синхронных генераторов переменного тока.Синхронные генераторы также более эффективны.

Скорость ветряной турбины трудно контролировать, и скорость ветра может изменяться порывами. Асинхронный генератор лучше справляется с этими колебаниями из-за собственного проскальзывания. Это меньше нагружает зубчатую передачу и механические компоненты, чем синхронный генератор.

Однако это допустимое изменение скорости составляет всего около 1%. Таким образом, индукционный генератор, подключенный к прямой линии, считается ветряной турбиной с фиксированной скоростью (см. Асинхронный генератор с двойным питанием для истинного генератора переменного тока с регулируемой скоростью).

Несколько генераторов или несколько обмоток на общем валу можно переключать, чтобы обеспечить высокую и низкую скорость, чтобы приспособиться к переменным ветровым условиям.

Запуск двигателя и регулировка скорости

Некоторые асинхронные двигатели могут потреблять более 1000% тока полной нагрузки во время запуска; хотя чаще встречается несколько сотен процентов. Небольшие двигатели мощностью в несколько киловатт или меньше могут запускаться путем прямого подключения к линии электропередачи.

Запуск больших двигателей может вызвать провал напряжения в сети, что повлияет на другие нагрузки.Автоматические выключатели, предназначенные для пуска двигателей (аналогичные плавким предохранителям с задержкой срабатывания), должны заменить стандартные автоматические выключатели для пусковых двигателей мощностью в несколько киловатт. Этот выключатель допускает перегрузку по току на время пуска.

Пускатель асинхронного двигателя с автотрансформатором

В двигателях

мощностью более 50 кВт используются пускатели двигателей для снижения линейного тока с нескольких сотен до нескольких сотен процентов от тока полной нагрузки. Автотрансформатор прерывистого режима может снизить напряжение статора на долю минуты в течение интервала пуска с последующим приложением полного линейного напряжения, как показано на рисунке выше.

Замыкание контактов S приводит к пониженному напряжению во время интервала пуска. Контакты S размыкаются, а контакты R замыкаются после запуска. Это снижает пусковой ток, скажем, до 200% от тока полной нагрузки. Поскольку автотрансформатор используется только в течение короткого интервала пуска, его размеры могут быть значительно меньше, чем у агрегата, работающего в непрерывном режиме.

Запуск трехфазных двигателей от однофазных источников

Трехфазные двигатели будут работать от однофазных так же легко, как и однофазные двигатели.Единственная проблема для любого двигателя — это запуск. Иногда 3-фазные двигатели приобретаются для использования с однофазными, если предполагается трехфазное питание.

Номинальная мощность должна быть на 50% больше, чем у сопоставимого однофазного двигателя, чтобы компенсировать одну неиспользуемую обмотку. Однофазное напряжение подается на пару обмоток одновременно с пусковым конденсатором, включенным последовательно с третьей обмоткой.

Пусковой выключатель размыкается на рисунке ниже при запуске двигателя. Иногда во время работы остается конденсатор меньшего размера, чем пусковой.

Пуск трехфазного двигателя от однофазного

Схема на рисунке выше для работы трехфазного двигателя на однофазной сети известна как статический преобразователь фазы , если вал двигателя не нагружен. Кроме того, двигатель работает как трехфазный генератор.

Трехфазное питание можно отводить от трех обмоток статора для питания другого трехфазного оборудования. Конденсатор обеспечивает фазу синтетического примерно на полпути ± 90 ° между выводами однофазного источника питания ± 180 ° для запуска.

Во время работы двигатель генерирует приблизительно стандартные 3-φ, как показано выше. Мэтт Иссерштедт демонстрирует полную схему питания домашнего механического цеха.

Самозапускающийся статический преобразователь фазы. Рабочий конденсатор = 25-30 мкФ на HP. Взято из рисунка 7, Hanrahan

Поскольку статический фазовый преобразователь не имеет нагрузки по крутящему моменту, он может запускаться с конденсатором значительно меньшего размера, чем обычный пусковой конденсатор. Если он достаточно мал, его можно оставить в цепи в качестве рабочего конденсатора (см. Рисунок выше).

Однако меньшие рабочие конденсаторы обеспечивают лучшую выходную трехфазную мощность. Более того, регулировка этих конденсаторов для выравнивания токов, измеренных в трех фазах, позволяет получить наиболее эффективную машину. Однако для быстрого запуска преобразователя требуется большой пусковой конденсатор примерно на секунду. Ханрахан представляет детали конструкции.

Более эффективный статический преобразователь фазы. Пусковой конденсатор = 50-100 мкФ / л. Рабочие конденсаторы = 12-16 мкФ / л.Взято из рисунка 1, Hanrahan

Асинхронные двигатели с несколькими полями

Асинхронные двигатели

могут содержать несколько обмоток возбуждения, например, 4-полюсную и 8-полюсную обмотки, соответствующие синхронным скоростям вращения 1800 и 900 об / мин. Подать питание на то или иное поле менее сложно, чем на повторное подключение катушек статора.

Несколько полей позволяют изменять скорость

Если поле сегментировано с выведенными выводами, оно может быть изменено (или переключено) с 4-полюсного на 2-полюсное, как показано выше для 2-фазного двигателя.Сегменты 22,5 ° переключаются на сегменты 45 °. Для ясности выше показана только проводка для одной фазы.

Таким образом, наш асинхронный двигатель может работать на нескольких скоростях. При переключении вышеуказанного двигателя 60 Гц с 4 полюсов на 2 полюса синхронная скорость увеличивается с 1800 до 3600 об / мин.

Q: Если двигатель приводится в движение частотой 50 Гц, каковы будут соответствующие 4-полюсные и 2-полюсные синхронные скорости?

А:

N  с  = 120f / P = 120 * 50/4 = 1500 об / мин (4-полюсный) N  с  = 3000 об / мин (2-полюсный) 

Асинхронные двигатели с переменным напряжением

Скорость малых асинхронных двигателей с короткозамкнутым ротором для таких применений, как приводные вентиляторы, может быть изменена путем снижения сетевого напряжения.Это снижает крутящий момент, доступный нагрузке, что снижает скорость (см. Рисунок ниже).

Регулирование переменного напряжения, скорость асинхронного двигателя

Электронное управление скоростью в асинхронных двигателях

Современная полупроводниковая электроника расширяет возможности управления скоростью. Изменяя сетевую частоту 50 или 60 Гц на более высокие или более низкие значения, можно изменить синхронную скорость двигателя. Однако уменьшение частоты тока, подаваемого на двигатель, также снижает реактивное сопротивление X L , что увеличивает ток статора.

Это может привести к насыщению магнитной цепи статора с катастрофическими результатами. На практике напряжение на двигателе необходимо уменьшать при уменьшении частоты.

Электронный частотно-регулируемый привод

И наоборот, частота привода может быть увеличена для увеличения синхронной скорости двигателя. Однако необходимо увеличить напряжение, чтобы преодолеть увеличивающееся реактивное сопротивление, чтобы поддерживать ток на уровне нормального значения и поддерживать крутящий момент.

Инвертор приближает синусоидальные волны к двигателю с помощью выходов с широтно-импульсной модуляцией. Это прерывистый сигнал, который может быть включен или выключен, высокий или низкий, процент времени включения соответствует мгновенному напряжению синусоидальной волны.

Когда для управления асинхронным двигателем применяется электроника, становится доступно множество методов управления, от простых до сложных:

  • Скалярное управление: Недорогой метод, описанный выше, для управления только напряжением и частотой без обратной связи.
  • Векторное управление: Также известно как векторное управление фазой. Компоненты тока статора, создающие магнитный поток и крутящий момент, измеряются или оцениваются в реальном времени для улучшения кривой крутящего момента двигателя. Это требует больших вычислений.
  • Прямое управление крутящим моментом: Продуманная адаптивная модель двигателя позволяет более прямое управление потоком и крутящим моментом без обратной связи. Этот метод быстро реагирует на изменения нагрузки.

Многофазные асинхронные двигатели Tesla Сводка

  • Многофазный асинхронный двигатель состоит из многофазной обмотки, встроенной в многослойный статор, и проводящей короткозамкнутой клетки, встроенной в многослойный ротор.
  • Трехфазные токи, протекающие внутри статора, создают вращающееся магнитное поле, которое индуцирует ток и, следовательно, магнитное поле в роторе. Крутящий момент ротора развивается, когда ротор немного проскальзывает за вращающимся полем статора.
  • В отличие от однофазных двигателей, многофазные асинхронные двигатели самозапускаются.
  • Пускатели двигателей минимизируют нагрузку на линию питания, обеспечивая при этом больший пусковой крутящий момент, чем требуется во время работы.Снижение линейного тока Пускатели требуются только для больших двигателей.
  • Трехфазные двигатели при запуске будут работать от однофазных.
  • Статический преобразователь фазы — это трехфазный двигатель, работающий на одной фазе без нагрузки на вал, генерирующий трехфазный выходной сигнал.
  • Несколько обмоток возбуждения можно перемонтировать для работы с несколькими дискретными скоростями двигателя, изменив количество полюсов.

Линейные асинхронные двигатели

Статор с обмоткой и короткозамкнутый ротор асинхронного двигателя можно разрезать по окружности и развернуть в линейный асинхронный двигатель.Направление линейного перемещения регулируется последовательностью привода фаз статора.

Линейный асинхронный двигатель предложен в качестве привода высокоскоростных пассажирских поездов. До этого момента линейный асинхронный двигатель с соответствующей системой левитации магнитного отталкивания, необходимой для плавной езды, был слишком дорогим для всех, кроме экспериментальных установок.

Тем не менее, линейный асинхронный двигатель должен заменить катапульты с паровым приводом для запуска самолетов на следующем поколении военно-морского авианосца CVNX-1 в 2013 году.Это повысит эффективность и сократит обслуживание.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *